K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 10 2019

\(B=x^2+\frac{y^2}{4}+1+xy-2x-y+\frac{3}{4}\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{6056}{3}\)

\(B=\left(x+\frac{y}{2}-1\right)^2+\frac{3}{4}\left(y-\frac{2}{3}\right)^2+\frac{6056}{3}\ge\frac{6056}{3}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{2}{3}\\y=\frac{2}{3}\end{matrix}\right.\)

12 tháng 10 2019

Ta có :

\(B=x^2+xy+y^2-2x-3y+2019\)

\(\Leftrightarrow4B=4x^2+4xy+4y^2-8x-12y+8076\)

\(\Leftrightarrow4B=\left(4x^2+4xy+y^2\right)-4\left(2x+y\right)+4+3y^2-4y+4022\)

\(\Leftrightarrow2B=\left(2x+y\right)^2-4\left(2x+y\right)+4+3\left(y^2-\frac{4}{3}y+\frac{4}{9}\right)+\frac{12062}{3}\)

\(\Leftrightarrow2B=\left(2x+y-2\right)^2+3\left(y-\frac{2}{3}\right)^2+\frac{12062}{3}\ge\frac{12062}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{2}{3}\)

Bạn kiểm tra lại nhé, mình k chắc có đúng k nữa !

26 tháng 12 2018

\(A=x^2+2y^2-2xy-2y-2x+2019\)

\(A=x^2+y^2+y^2-2xy+2y-4y-2x+2019\)

\(A=\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+y^2-4y+4+2014\)

\(A=\left(x-y\right)^2-2\left(x-y\right)+1+\left(y-2\right)^2+2014\)

\(A=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2-1=0\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)

10 tháng 10 2019

\(4B=4x^2+4xy+4y^2-8x-12y+8076\)

= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)

\(+\left(2x\right)^2-8x+8076\)

= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)

đến đây thì dễ rồi

10 tháng 10 2019

đến đấy rồi sao nữa bạn

NV
25 tháng 12 2018

\(A=x^2+y^2+1-2xy-2x+2y+y^2-4y+4+2014\)

\(=\left(x-y-1\right)^2+\left(y-2\right)^2+2014\ge2014\)

\(\Rightarrow A_{min}=2014\) khi \(\left\{{}\begin{matrix}y-2=0\\x-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

3 tháng 8 2019

\(H=x^2+2xy+y^2+2x+2y+x^2+4x+2019=\left(x+y\right)^2+2\left(x+y\right)+\left(x+2\right)^2+2015\)

\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2014\ge2014\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2;y=1\)

\(I=\left(1-x\right)^2+\left(-2-y\right)^2+\left(x+y\right)^2\ge\frac{\left(1-x-2-y+x+y\right)^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(1-x=-2-y=x+y\)\(\Leftrightarrow\)\(x=\frac{4}{3};y=\frac{-5}{3}\)