Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
A = ( x 2 + 2 – 2 x ) ( x 2 + 2 + 2 x ) – x 4 = x 2 . x 2 + 2 . x 2 + 2 x . x 2 + 2 . x 2 + 2 . 2 + 2 . 2 x – 2 x . x 2 – 2 . 2 x – 2 x . 2 x – x 4 = x 4 + 2 x 2 + 2 x 3 + 2 x 2 + 4 + 4 x – 2 x 3 – 4 x – 4 x 2 – x 4
= 4
Vậy A = 4
Đáp án cần chọn là: A
\(x^4-2x^2+1+x^2+2x+1+2018=\left(x^2-1\right)^2+\left(x+1\right)^2+2018\ge2018\)
Dấu "=" xayr ra <=> \(\hept{\begin{cases}x^2-1=0\\x+1=0\end{cases}\Leftrightarrow x=-1}\)
Kết luận :...