Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-y)2+lx-1l+2011>(=)0+0+2011=2011
dấu bằng xảy ra khi (x-y)2=0;lx-1l=0
lx-1l=0=>x=1
=>(1-x)2=0
=>y=1
vậy MinM=2011 khi x=y=1
Ta có:
(x-y)2\(\ge\)0
|x-1|\(\ge\)0
2011>0
Suy ra GTNN của M=2011 tại x=1, y=1
c, C=|x-1|+|x-2|+...+|x-100|=(|x-1|+|100-x|)+(|x-2|+|99-x|)+...+(|x-50|+|56-x|) \(\ge\) |x-1+100-x|+|x-2+99-x|+...+|x-50+56-x|=99+97+...+1 = 2500
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(100-x\right)\ge0\\\left(x-2\right)\left(99-x\right)\ge0.....\\\left(x-50\right)\left(56-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le100\\2\le x\le99....\\50\le x\le56\end{cases}\Leftrightarrow}50\le x\le56}\)
Vậy MinC = 2500 khi 50 =< x =< 56
a. A=|x-2011|+|x-2012|=|x-2011|+|2012-x| \(\ge\) |x-2011+2012-x| = 1
Dấu "=" xảy ra khi \(\left(x-2011\right)\left(2012-x\right)\ge0\Leftrightarrow2011\le x\le2012\)
Vậy MinA = 1 khi 2011 =< x =< 2012
b, B=|x-2010|+|x-2011|+|x-2012|=(|x-2010|+|2012-x|) + |x-2011|
Ta có: \(\left|x-2010\right|+\left|2012-x\right|\ge\left|x-2010+2012-x\right|=0\)
Mà \(\left|x-2011\right|\ge0\forall x\)
\(\Rightarrow B=\left(\left|x-2010\right|+\left|2012-x\right|\right)+\left|x-2011\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-2010\right)\left(2012-x\right)\ge0\\\left|x-2011\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow}x=2011}\)
Vậy MinB = 2 khi x = 2011
Câu c để nghĩ
giá trị nhỏ nhất là 3
\(\left|x-2010\right|+\left|x-2012\right|=\left|x-2010\right|+\left|x-2012\right|\ge\left|x-2010-x+2012\right|=2\)
\(\left|x-2011\right|\ge0\)
=> \(B\ge2\)
dấu = xảy ra khi \(\hept{\begin{cases}\left(x-2010\right).\left(-x+2012\right)\ge0\\x=2011\end{cases}}\Rightarrow\hept{\begin{cases}2010\le x\le2012\\x=2011\end{cases}\Rightarrow x=2011}\)