K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2018

\(A=2x^2+y^2-2xy-2x+y-12\)

\(A=\left(x^2-2xy+y^2\right)+x^2-2x+y-12\)

\(A=\left[\left(x-y\right)^2-2\left(x-y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2-x+\frac{1}{4}\right)-\frac{25}{2}\)

\(A=\left(x-y-\frac{1}{2}\right)^2+\left(x-\frac{1}{2}\right)^2-\frac{25}{2}\)

Do \(\left(x-y-\frac{1}{2}\right)^2\ge0\forall x;y\)

     \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow A\ge-\frac{25}{2}\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x-y-\frac{1}{2}=0\\x-\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)

Vậy  \(A_{Min}=-\frac{25}{2}\Leftrightarrow\left(x;y\right)=\left(\frac{1}{2};0\right)\)

18 tháng 8 2018

\(A=-2x^2-y^2-2xy-2x+y-12\)

\(-A=2x^2+y^2+2xy+2x-y+12\)

\(-A=\left(x^2+2xy+y^2\right)+x^2+2x-y+12\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right).\frac{1}{2}+\frac{1}{4}\right]+\left(x^2+3x+\frac{9}{4}\right)+\frac{19}{2}\)

\(-A=\left(x+y-\frac{1}{2}\right)^2+\left(x+\frac{3}{2}\right)^2+\frac{19}{2}\)

Do  \(\left(x+y-\frac{1}{2}\right)^2\ge0\forall x;y\)

      \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge\frac{19}{2}\Leftrightarrow A\le-\frac{19}{2}\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}x+y-\frac{1}{2}=0\\x+\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=2\end{cases}}\)

Vậy \(A_{Max}=-\frac{19}{2}\Leftrightarrow\left(x;y\right)=\left(-\frac{3}{2};2\right)\)

29 tháng 7 2018

a, = x^2 -2xy +y^2 +(x^2-2x+1)+2

    = (x-y)^2 + (x-1)^2 + 2

GTNN bằng 2 khi: x-y=0 và x-1=0

Suy ra: x = y = 1

Vậy GTNN của biểu thức trên là: 2 tại x=y=1

b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17

    = -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17

    = -(x-y+1)^2 -(y-4)^2 +17

GTLN bằng 17 khi: x-y+1 =0 và y-4=0

                                   x-4+1=0 và y=4

                                   x=3 và y=4

Vậy GTLN của biểu thức là 17 tại x=3,y=4.

Chúc bạn học tốt.

31 tháng 1 2017

sai đề 

31 tháng 1 2017

sai đè bạn ơi

lần sau nhớ chú ý nhé

ra câu khác đi

22 tháng 2 2020

\(A=2x^2+2xy+y^2-2x+2y+2\)

\(\Rightarrow2A=4x^2+4xy+2y^2-4x+4y+4\)

              \(=\left(4x^2+4xy+y^2\right)-2\left(2x+y\right).1+1+y^2+6y+9-6\)

               \(=\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(y+3\right)^2-6\)

                \(=\left(2x+y-1\right)^2+\left(y+3\right)^2-6\)

vì \(\left(2x+y-1\right)^2\ge0\forall x,y;\left(y+3\right)^2\ge0\forall y\)nên

\(2A=\left(2x+y-1\right)+\left(y+3\right)-6\ge-6\forall x,y\)

hay \(2A\ge-6\Rightarrow A\ge-3\Rightarrow minA=-3\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

                                                          

13 tháng 7 2019

\(1.\)

\(a;A=-2x^2+4x-18\)

\(A=-2\left(x^2-4x+18\right)\)

\(A=-2\left(x^2-2.x.2+4+14\right)\)

\(A=-2\left(x-2\right)^2-14\le-14\)

Dấu = xảy ra khi : \(x-2=0\)

                              \(\Rightarrow x=2\)

Vậy Amax =-14 tại x = 2

Các câu còn lại lm tương tự........

14 tháng 7 2019

\(a-2x^2+4x-18\)

=-[(2x2-2x.2+4)+14]

=-[(2x-2)2+14]

=-(2x-2)2-14

Vì -(2x-2)2 bé hơn hoặc bằng 0 với mọi x nên -(2x-2)2-14 bé hơn hoặc bằng -14

Dấu "=" xảy ra khi x=1 

Vậy GTLN là -14 tại x=1

Mấy bài khác tương tự nha bạn. Áp dụng hằng đẳng thức và trình bày như thế

bài 2 xem lại cách ra đề nha bạn

21 tháng 9 2021

\(B=2x^2+y^2-2x+2xy+2y+3=y^2+2y\left(x+1\right)+\left(x+1\right)^2+\left(x^2-4x+4\right)-2=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

\(minB=-2\Leftrightarrow\)\(\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)

21 tháng 9 2021

\(B=2x^2+y^2-2x+2xy+2y+3\\ B=\left(x^2+2xy+y^2\right)+2\left(x+y\right)+1+\left(x^2-4x+4\right)-2\\ B=\left(x+y\right)^2+2\left(x+y\right)+1+\left(x-2\right)^2-2\\ B=\left(x+y+1\right)^2+\left(x-2\right)^2-2\ge-2\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)