K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

có điều kiện ko

9 tháng 4 2017

ko có dk giai ho ca , ket qua = -0,25 nhung ko biet lam

8 tháng 4 2019

Áp dụng bđt AM-GM:

\(2x^2+\frac{6}{x^2}+3y^2+\frac{8}{y^2}\)

\(=\left(2x^2+\frac{2}{x^2}\right)+\left(3y^2+\frac{3}{y^2}\right)+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\)

\(\ge2\sqrt{\frac{4x^2}{x^2}}+2\sqrt{\frac{9y^2}{y^2}}+\left(\frac{4}{x^2}+\frac{5}{y^2}\right)\ge4+6+9=19\)

\("="\Leftrightarrow x=y=\pm1\)

22 tháng 11 2018

Ai trả lời mk cho!

22 tháng 11 2018

mk cho

7 tháng 4 2017

bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra

bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1

Áp dụng bđt AM-GM , ta có P >/  4 =>minP=4

đẳng thức xảy ra khi đồng thời  x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé

15 tháng 7 2016

 \(B=4x^2-12x+11\)

    \(=\left(2x\right)^2-2\times2x\times3+3^2+2\) (áp dụng HĐT ta có)

    \(=\left(2x+3\right)^2+2\le2\)

     (do (2x+3)2 nhỏ hơn hoặc bằng 0)

       \(\Rightarrow\)B(min)=2 khi và chỉ khi \(\left(2x-3\right)^2=0\Rightarrow x=\frac{3}{2}\)

               Vậy GTNN của B = 2 khi và chỉ khi x = 3/2