K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có N = | x - 2014 | + | 2015 -x | \(\le\) | x - 2014 + 2015 - x |

N \(\ge\left|1\right|\)

\(\Rightarrow N\ge1\)

N đạt GTNN của N = 1 khi \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x\ge0\end{matrix}\right.\)

Hoặc \(\left\{{}\begin{matrix}x-2014\le0\\2015-x\le0\end{matrix}\right.\)

* \(\left\{{}\begin{matrix}x-2014\ge0\\2015-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2014\\x\le2015\end{matrix}\right.\)

\(\Rightarrow2014\le x\le2015\) ( Thỏa mãn )

* \(\left\{{}\begin{matrix}x-2014\le0\\2015-x\le0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2014\\x\ge2015\end{matrix}\right.\)

\(\Rightarrow2014\le x\)\(x\ge2015\) ( loại )

=> N đạt GTNN N = 1 khi \(2014\le x\le2015\)

Chúc bn học tốt vui

16 tháng 1 2019

came ơn

8 tháng 4 2018

Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x

\(\left|2015-x\right|\ge0\)với mọi giá trị của x

\(\left|2016-x\right|\ge0\)với mọi giá trị của x

=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x

=> GTNN của A là 0.

8 tháng 4 2018

Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2

Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0

TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0

=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )

TH2: Làm tương tự => loại

Có I 2015 -x I \(\ge\)

Dấu = xảy ra khi x = 2015

Vậy A min = 2 khi x = 2015

10 tháng 3 2019

\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)

\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)

\(\Leftrightarrow A=2\)

Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015

Vậy GTNN của A = 2 tại x = 2015

10 tháng 3 2019

\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(\ge x-2014+0+2016-x=2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)

26 tháng 12 2016

giá trị nhỏ nhất là 0

vì giá trị tuyệt đối luôn lớn hơn hoặc bằng 0

dấu bằng xảy ra khi

x - 2013 = 0

x-2014=0

x-2015=0

vậy không có giá trị của x thỏa mãn giá trị nhỏ nhất của biểu thức

28 tháng 12 2016

Gọi biểu thức trên là A

Ta thấy 

A=/x-2013/+/2014-x/+/x-2015/ sẽ lớn hơn hoặc bằng:

/x-2013+2014-x/=/1/=1

Min A=1

31 tháng 3 2017

\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)

\(=\left|x-2013\right|+\left|x-2014\right|+\left|2015-x\right|\)

\(\ge x-2013+0+2015-x=2\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x-2013\ge0\\x-2014=0\\x-2015\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge2013\\x=2014\\x\le2015\end{matrix}\right.\)\(\Rightarrow x=2014\)

Vậy với \(x=2014\) thì \(A_{MIN}=2\)

31 tháng 3 2017

Hình như bn làm sai rui Ace Legona ạ!!!!

17 tháng 10 2015

\(\left(x-1\right)^2-5\ge-5=>min=-5\left(x-1\right)^2=0=>x-1=0=>x=1\)

vay GTNN la -5 tai x=1

1 tháng 1 2018

Áp dụng bđt  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\forall a;b\) Ta có :

\(\left|x-2013\right|+\left|x-2015\right|=\left|2013-x\right|+\left|x-2015\right|\ge\left|2013-x+x-2015\right|=2\)

\(\Rightarrow A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\ge2+\left|x-2014\right|\ge2\)có GTNN là 2

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2013-x\right)\left(x-2015\right)\ge0\\\left|x-2014\right|=0\end{cases}\Rightarrow x=2014\left(TM\right)}\)

Vậy GTNN của A là 2 tại x = 2014

áp dụng bđt về GTTĐ /x-2013/+/x-2015/=/x-2013/+/2015-x/\(\ge\)/x-2013+2015-x/=2

mà /x-2014/\(\ge0\)

nên A\(\ge2\)

dấu = xảy ra <=>x=2014

24 tháng 7 2015

ta có :

| 2015 + x|\(\ge\)0

=> -|2015+x|\(\le\)0

=>A=2014-|2015+x|\(\le\)2014

Dấu "=" xảy ra khi:

2015+x=0

=>x=-2015

Vậy GTLN của A là 2014 tại x=-2015

24 tháng 7 2015

l2015 + xl >=0 với mọi x

- l 2015 +x l <=0 với mọi x 

2014 - l2015+ x l <= 2014 với mọi x 

VẬy GTLN của A là 2014 khi x + 2015 = 0 => x = -2015

16 tháng 7 2015

a) Có thể đề là: P = (x - 2y)2  + (y - 2012)2014

Vì (x - 2y)2 \(\ge\) 0 ; (y - 2012)2 \(\ge\) 0 với mọi x; y nên  P =  (x - 2y)2  + (y - 2012)2014 \(\ge\) 0 với mọi x; y

=> P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0 

=> y = 2012 và x = 2y = 4024

b) Vì (x + y - 3)4 \(\ge\) 0 ; (x - 2y)2 \(\ge\) 0 => Q =  (x + y - 3)4 +  (x - 2y)2 + 2015  \(\ge\) 0 + 0 + 2015 = 2015 với mọi x; y

=> Q nhỏ nhất = 2015 khi x + y - 3 = 0 và x - 2y = 0

=> x = 2y và x + y  =3 => 3y = 3 => y = 1 ; x = 2

16 tháng 7 2015

a) P không có giá trị nhỏ nhất vì lấy y là số lớn tùy ý và x = 2y khi đó P = 0 - (y - 2012)2014  sẽ là số âm có giá trị tuyệt đối rất lớn. Có thể câu hỏi ra là dấu + trước biểu thức (y - 2012)2014.

Nếu P = (x -2y)2 + (y - 2012)2014 thì P > 0 + 0 (lũy thừa bạc chẵn bao giờ cũng không âm)

P nhỏ nhất = 0 khi x - 2y = 0 và y - 2012 = 0, hay là y = 2012 và x = 2.y = 4024

b) Q = (x + y - 3)2 + (x - 2y)2 + 2015 > 0 + 0 + 2015 = 2015. Q nhỏ nhất = 2015 khi x + y -3 = 0 và x - 2y = 0

=> x + y =3     (1)

     x = 2y        (2)

Thay x = 2y vào  (1)

=> 2y + y = 3 => 3y = 3 => y = 1

=> x = 2.y = 2

Vậy Q nhỏ nhất = 15 khi x = 2 và y = 1