K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

A = \(\frac{-1}{3}x^2+2x-5\)

   = \(\frac{-1}{3}.\left(x^2-6+15\right)\)

\(\frac{-1}{3}.\left(x^2-2.x.3+3^2-3^2+5\right)\)

\(\frac{-1}{3}.\left[\left(x-3\right)^2-4\right]\)

\(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\)

-Ta có: \(\frac{-1}{3}.\left(x-3\right)^2\le0\).Với mọi x

      => \(\frac{-1}{3}.\left(x-3\right)^2+\frac{4}{3}\le\frac{4}{3}\).Với mọi x

hay A \(\le\frac{4}{3}\).Với mọi x

- Dấu " = " xảy ra khi: (x - 3)2 = 0   <=> x = 3

       Vậy GTLN của A = \(\frac{4}{3}\)khi x = 3

26 tháng 12 2017

đề mình đăng nhầm các bạn trình bày câu trả lời tại đây giúp nhé

https://olm.vn//hoi-dap/question/1120717.html?auto=2

1 tháng 2 2018

A=x2y2+2x2+24xy+16x+191

A={(xy)2+24xy+144}+(2x2+16x+32)+15

A=(xy+12)2 + 2(x+4)2 + 15

Nhận thấy: \(\hept{\begin{cases}\left(xy+12\right)^2\ge0\\2\left(x+4\right)^2\ge0\end{cases}}\)Với mọi x, y

=> A=(xy+12)2 + 2(x+4)2 + 15 \(\ge\)0+0+15 Với mọi x, y

=> GTNN của A=15

Đạt được khi: \(\hept{\begin{cases}\left(xy+12\right)^2=0\\2\left(x+4\right)^2=0\end{cases}}\) <=> \(\hept{\begin{cases}xy+12=0\\x+4=0\end{cases}}\)<=> \(\hept{\begin{cases}y=3\\x=-4\end{cases}}\)

Đáp số: GTNN là 15, đạt được khi x=-4; y=3

a: ĐKXĐ: \(x\notin\left\{-3;2\right\}\)

b: \(A=\dfrac{x^2-4-5+x+3}{\left(x-2\right)\left(x+3\right)}=\dfrac{x^2+x-6}{\left(x-2\right)\left(x+3\right)}=\dfrac{x+2}{x-2}\)

c: Để A=3/4 thì 4x-8=3x+6

=>x=14

d: Để A nguyên thì \(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{3;1;4;0;6;-2\right\}\)

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

28 tháng 10 2021

Bài 8:

\(F=x^2-2x+1+x^2-6x+9=2x^2-8x+10\\ F=2\left(x^2-4x+4\right)+2=2\left(x-2\right)^2+2\ge2\\ F_{min}=2\Leftrightarrow x=2\)

28 tháng 10 2021

Bài 9:

\(A=-x^2+2x-1+5=-\left(x-1\right)^2+5\le5\\ A_{max}=5\Leftrightarrow x=1\\ B=-x^2+10x-25+2=-\left(x-5\right)^2+2\le2\\ B_{max}=2\Leftrightarrow x=5\\ C=-x^2+6x-9+9=-\left(x-3\right)^2+9\le9\\ C_{max}=9\Leftrightarrow x=3\)