Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.
Lời giải:
Ta có: \(A=\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+4}{c}\)
\(\Leftrightarrow A=1+\frac{1}{a}+1+\frac{1}{b}+1+\frac{4}{c}=3+\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)(a+b+c)\geq (1+1+2)^2\)
\(\Leftrightarrow \left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\geq \frac{4^2}{a+b+c}=\frac{16}{6}=\frac{8}{3}\)
Do đó: \(A\geq 3+\frac{8}{3}=\frac{17}{3}\) hay \(A_{\min}=\frac{17}{3}\)
Dấu bằng xảy ra khi \((a,b,c)=(\frac{3}{2}; \frac{3}{2}; 3)\)
cai hang thu ba la dung bat dang gi vay ban hoi do gioi khong thay