Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(x^2+3y^2+2z^2-2x+12y+4z+15=0\)
\(\Leftrightarrow x^2-2x+1+3y^2+12y+12+2z^2+4z+2=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y^2+4y+4\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2=0\)
Dễ thấy: \(\left(x-1\right)^2+3\left(y+2\right)^2+2\left(z+1\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\3\left(y+2\right)^2=0\\2\left(z+1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\\z=-1\end{matrix}\right.\)
Bài 2:
a)\(A=x^2-4xy+5y^2+10x-22y+28\)
\(=x^2-4xy+10x+4y^2-20y+25+y^2-2y+1+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
b)\(B=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+15\)
\(=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+15\)
Đặt \(t=x^2-5x+4\) thì ta có:
\(t\left(t+2\right)+15=t^2+2t+1+14\)
\(=\left(t+1\right)^2+14\ge14\)
Xảy ra khi \(t=-1 \)\(\Rightarrow x^2-5x+4=-1\Rightarrow x=\dfrac{5\pm\sqrt{5}}{2}\)
a, \(A_{\left(x\right)}=2x^2+2xy+y^2-2x+2y+2\)
\(=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(x^2-4x+4\right)-3\)
\(=\left(x+y+1\right)^2+\left(x-2\right)^2-3\ge-3\) hay \(A_{\left(x\right)}\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y+1\right)^2=0\\\left(x-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+y+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy \(minA_{\left(x\right)}=-3\) khi x=-3; y=2
b, \(B_{\left(x\right)}=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2+4y^2+25-4xy+10x-20y\right)+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\Leftrightarrow B_{\left(x\right)}\ge2\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Vậy \(minB_{\left(x\right)}=2\Leftrightarrow x=-3;y=1\)
c, \(C_{\left(x\right)}=x^2-10xy+26y^2+14x-76y+59\)
\(=\left(x^2+25y^2+49-10xy+14x-70y\right)+\left(y^2-6y+9\right)+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\Leftrightarrow C_{\left(x\right)}\ge1\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-5y+7\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-5y+7=0\\y-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=3\end{matrix}\right.\)
Vậy \(minC_{\left(x\right)}=1\Leftrightarrow x=8;y=3\)
d, \(D_{\left(x\right)}=4x^2-4xy+2y^2-20x-4y+174\)
\(=\left(4x^2+y^2+25-4xy-20x+10y\right)+\left(y-14y+49\right)+74\)
\(=\left(2x-y-5\right)^2+\left(y-7\right)^2+74\ge74\Leftrightarrow D_{\left(x\right)}\ge74\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(2x-y-5\right)^2=0\\\left(y-7\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x-y-5=0\\y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=7\end{matrix}\right.\)
Vậy \(minD_{\left(x\right)}=74\Leftrightarrow x=6;y=7\)
e, \(E_{\left(x\right)}=x^2-2x+y^2+4y+5\)
\(=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(minE_{\left(x\right)}=0\Leftrightarrow x=1;y=-2\)
bạn ơi! Sao cái chỗ A(x) =(x+y+1)2+(x-2)2-3 mà chuyển sang lại là -3 v
mk gợi ý, phần còn lại tự làm
a) \(A=x^2+2x+5=\left(x+1\right)^2+4\ge4\)
b) \(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)
c) \(\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
d) \(D=x^2-2x+y^2-4y+7=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\)
e) \(E=x^2-4xy+5y^2+10x-22y+28=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
a) A = x2 + 2x + 5
= x2 + 2x + 1 + 4
= ( x + 1 )2 + 4
Nhận xét :
( x + 1 )2 > 0 với mọi x
=> ( x + 1 )2 + 4 > 4
=> A > 4
=> A min = 4
Dấu " = " xảy ra khi : ( x + 1 )2 = 0
=> x + 1 = 0
=> x = - 1
Vậy A min = 4 khi x = - 1
b) B = 4x2 + 4x + 11
= ( 2x )2 + 4x + 1 + 10
= ( 2x + 1 )2 + 10
Nhận xét :
( 2x + 1 )2 > 0 với mọi x
=> ( 2x + 1 )2 + 10 > 10
=> B > 10
=> B min = 10
Dấu " = " xảy ra khi : ( 2x + 1 )2 = 0
=> 2x + 1 = 0
=> x = \(\frac{-1}{2}\)
Vậy Bmin = 10 khi x = \(\frac{-1}{2}\)
c) C = ( x - 1 ) ( x + 2 ) ( x + 3 ) ( x + 6 )
= [ ( x - 1 ) ( x + 6 ) ] [ ( x + 2 ) ( x + 3 ) ]
= ( x2 + 5x - 6 ) ( x2 + 5x + 6 )
= ( x2 + 5x ) 2 - 62
= ( x2 + 5x )2 - 36
Nhận xét :
( x2 + 5x )2 > 0 với mọi x
=> ( x2 + 5x )2 - 36 > - 36
=> C > - 36
=> C min = - 36
Dấu " = " xảy ra khi : ( x2 + 5x )2 = 0
=> x2 + 5x = 0
=> x ( x + 5 ) = 0
=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy C min = - 36 khi x = 0 hoặc x = - 5
d) D = x2 - 2x + y2 - 4y + 7
= ( x2 - 2x + 1 ) + ( y2 - 4x + 4 ) + 2
= ( x - 1 )2 + ( y - 2 )2 + 2
Nhận xét :
( x - 1 )2 > 0 với mọi x
( y - 2 )2 > 0 với mọi y
=> ( x - 1 )2 + ( y - 2 )2 > 0
=> ( x - 1 )2 + ( y - 2 )2 + 2 > 2
=> D > 2
=> D min = 2
Dấu " = " xảy ra khi : \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
=> \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy D min = 2 khi x = 1 và y = 2
\(b,\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=15-8=7\)
\(\Leftrightarrow x=\frac{-7}{2}\)
Vậy \(x=\frac{-7}{2}\)
a) \(A=25x^2+3y^2-10x+11\)
\(A=\left(5x-1\right)^2+3y^2+11\ge11\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{5}\\y=0\end{matrix}\right.\)
b) \(B=\left(x-3\right)^2+\left(x-11\right)^2\)
\(B=2\left(x^2-14x+65\right)\)
\(B=2\left[\left(x-7\right)^2+16\right]\)
\(B=2\left(x-7\right)^2+32\ge32\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=7\)
c) \(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
Đặt \(x^2-5x-6=a\)
\(C=a\left(a+12\right)\)
\(C=a^2+12a+36-36\)
\(C=\left(a+6\right)^2-36\ge-36\)
Dấu "=" xảy ra \(\Leftrightarrow a=-6\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
\(C=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\\ C=\left(x+1\right)\left(x-6\right)\left(x-2\right)\left(x-3\right)\\ C=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\\ C=\left(x^2-5x\right)^2-6^2\\ C=\left(x^2-5x\right)^2-36\)
Ta có:
\(\left(x^2-5x\right)^2\ge0\\ \Rightarrow C=\left(x^2-5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi và chỉ khi:
(x2 - 5x)2 = 0 => x2 - 5x = 0 => x(x - 5) = 0
=> x = 5 hoặc x = 0
Vậy MinC = -36 <=> x = 5; x = 0
a) A = 25x^2 + 10x + 1 + 3y^2 + 10
= ( 5x + 1 )^2 + 3y^21 + 10
Vậy GTNN của A là 10 khi y = 0 và 5x + 1 = 0
=> y = 0 và x = -1/5
b) Đặt x - 3 = t => x - 11 = t - 8 Ta có :
t^2 + ( t - 8 )^2 = t^2 + t^2 - 16t + 64 = 2t^2 - 16t + 64
= 2 ( t^2 - 8t + 32 ) = 2 ( t^2 - 8t + 16 + 16 ) = 2 ( t - 4 )^2 + 32
Vậy GTNN là 32 khi t = 4
=> x - 3 = 4 => x = 7