Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi lại đầu bài được không có phải thế này à
\(|x-1|.\left(6-|x-1|\right)\)
Bài 1 :
a, \(A=x\left(x-6\right)+10\)
=x^2 - 6x + 10
=x^2 - 2.3x+9+1
=(x-3)^2 +1 >0 Với mọi x dương
A=|x+2|-|x-3|≤ | x+2-(x-3)|
Vì | x+2-(x-3)|
=> | x+2-x+3| = | (x-x)+(2+3)|=| 5|=5
vậy GTNN của A = 5
A = | x + 2 | + | x - 3 |
= | x + 2 | + | 3 - x | ≥ | x + 2 + 3 - x | = 5 ∀ x
Dấu "=" xảy ra <=> ( x + 2 )( 3 - x ) ≥ 0 <=> -2 ≤ x ≤ 3
Vậy MinA = 5 <=> -2 ≤ x ≤ 3
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)