Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2(2x + 3)2 + 5
vì (2x + 3)2 ≥ 0 ∀ x ⇒ 2(2x +3)2 + 5 ≥ 5
A(min) = 5 ⇒ x = - \(\dfrac{3}{2}\)
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
c, Vì |4 - 1/2x| > 0
=> |4 - 1/2x| - 1/4 > -1/4
=> C > -1/4
Dấu "=" xảy ra
<=> |4 - 1/2x| = 0
<=> 4 - 1/2x = 0
<=> 1/2x = 4
<=> x = 8
KL: Cmin = -1/4 <=> x = 8
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Bài 1:
Ta có: \(-\left|2x+6\right|\le0\)
\(\Rightarrow9-\left|2x+6\right|\le9\)
\(\Rightarrow5-\left(9-\left|2x+6\right|\right)\le5\)
Dấu "=" xảy ra <=> 2x + 6 = 9 <=> x = \(\frac{3}{2}\)
Vậy GTNN của A là 5 khi x = \(\frac{3}{2}\)
Bài 2:
Ta có: \(\left|2x+6\right|\ge0\)
\(\Rightarrow\left|2x+6\right|-3\ge-3\)
\(\Rightarrow-5-\left(\left|2x+6\right|-3\right)\ge-5\)
Dấu "=" xảy ra <=> 2x + 6 = 3 <=> x = \(-\frac{3}{2}\)
Vậy GTLN của A là -5 khi x = \(-\frac{3}{2}\)
* Tìm GTLN :
Ta có :
\(A=\frac{2x+5}{2x-1}=\frac{2x-1+6}{2x-1}=\frac{2x-1}{2x-1}+\frac{6}{2x-1}=1+\frac{6}{2x-1}\)
Để A đạt GTLN thì \(\frac{6}{2x-1}\) phải đạt GTLN hay \(2x-1>0\) và đạt GTNN
\(\Rightarrow\)\(2x-1=1\)
\(\Rightarrow\)\(2x=2\)
\(\Rightarrow\)\(x=1\)
Suy ra : \(A=\frac{2x+5}{2x-1}=\frac{2.1+5}{2.1-1}=\frac{2+7}{2-1}=\frac{9}{1}=9\)
Vậy \(A_{max}=9\) khi \(x=1\)
Chúc bạn học tốt ~
mình cần gấp pls :(((