Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+5y^2+2xy-4x-8y+2015\)
\(=\left(x^2+y^2+2xy\right)-4\left(x+2y\right)+4+4y^2-4y+1+2015=\left[\left(x+y\right)^2-4\left(x+2y\right)+4\right]+\left(4y^2-4y+1\right)+2015\)
\(=\left(x+y-2\right)^2+\left(2y-1\right)^2+2010\)
Do.....
Nên .....
Vậy MIN = 2010 <=> x = 3/2; y = 1/2
P/S: nhương người đi sau
\(\)
\(A=\left(x+3\right)\left(x-4\right)+7=x^2-x-5=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}-5\)
\(=\left(x-\frac{1}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
"=" <=> x = 1/2
\(B=3-\left(x-1\right)\left(x-2\right)=3-\left(x^2-3x+2\right)\)
\(=3-\left(x-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+2\right)\)
\(=3+\frac{1}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{13}{4}\)
Xảy ra khi x = 3/2
\(M=\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{x^2-4+10-x^2}{x+2}\right)\)
\(M=\left(\dfrac{x^2}{x\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right):\left(\dfrac{6}{x+2}\right)\)
a) dkxd : x khac {0;1;-2)
\(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{\left(x-2\right)}+\dfrac{1}{x+2}\right).\left(\dfrac{x+2}{6}\right)\)
\(M=\left(\dfrac{x-2\left(x+2\right)+\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\right).\left(\dfrac{x+2}{6}\right)=\dfrac{-6}{6\left(x-2\right)}=\dfrac{1}{2-x}\)
b)
GTLN M =1 khi x =1
A= X2+5X+25/4-37/4 =(X+5/2)2-37/4 >= -37/4
Amin=-37/4
Đạt được khi : X=-5/2
B=-X2+7X+1=-(X2-7X-1)=-(X2+7X+49/4-53/4)=-(X+7/2)2+53/4<=53/4
BMax=53/4
Đạt được khi:X=-7/2
C=2x2+6x=2x2+6x+9/4-9/4=2(x2+3x+9/4)-9/4=2(x+3/2)2-9/4>=-9/4
CMin=-9/4
Đạt được khi:x=-3/2
a: Ta có: \(-x^2+4x+5\)
\(=-\left(x^2-4x-5\right)\)
\(=-\left(x^2-4x+4-9\right)\)
\(=-\left(x-2\right)^2+9\le9\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(-x^2-7x+4\)
\(=-\left(x^2+7x-4\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{7}{2}+\dfrac{49}{4}-\dfrac{65}{4}\right)\)
\(=-\left(x+\dfrac{7}{2}\right)^2+\dfrac{65}{4}\le\dfrac{65}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{7}{2}\)
\(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)
a) \(B=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right)\div\frac{x}{x+2019}\)
\(\Leftrightarrow B=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-4x-1}{x^2-1}\cdot\frac{x+2019}{x}\)
\(\Leftrightarrow B=\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\cdot\frac{x+2019}{x}\)
\(\Leftrightarrow B=\frac{x^2-1}{x^2-1}\cdot\frac{x+2019}{x}\)
\(\Leftrightarrow B=\frac{x+2019}{x}\)
b) Ta có : \(B=\frac{x+2019}{x}\)
\(\Leftrightarrow B=1+\frac{2019}{x}\)
Để B max \(\Leftrightarrow\)x min
Mà x là số nguyên
\(\Leftrightarrow\)x = 2 (Vì loại các giá trị ở đkxđ)
Vậy \(Max_B=\frac{2+2019}{2}=\frac{2021}{2}=1010,5\Leftrightarrow x=2\)
x là số nguyên thì x cũng có thể là âm mà bạn
phải lập luận như nào thì mới lấy x=2 được chứ
a) \(A=-x^2-4x+9=-\left(x^2+2.x.2+2^2\right)+13\)
\(=-\left(x+2\right)^2+13\)
Ta có: \(\left(x+2\right)^2\ge0\)
\(\Rightarrow-\left(x+2\right)^2\le0\)
\(\Rightarrow-\left(x+2\right)^2+13\le13\)
Dấu ''='' xảy ra khi \(x=-2\)
Vậy GTLN của A bằng 13 đạt được khi \(x=-2\)
b) \(B=x\left(6-x\right)+74+x=-x^2+7x+74\)
\(=-\left[x^2-2\times x\times\frac{7}{2}+\left(\frac{7}{2}\right)^2\right]+86,25\)
\(=-\left(x-\frac{7}{2}\right)^2+86,25\)
Ta có: \(\left(x+\frac{7}{2}\right)^2\ge0\)
\(\Rightarrow-\left(x+\frac{7}{2}\right)\le0\)
\(\Rightarrow-\left(x+\frac{7}{2}\right)^2+86,25\le86,25\)
Dấu '=' xảy ra khi \(x=-\frac{7}{2}=-3,5\)
Vậy GTLN của B bằng 86,25 đạt được khi x = -3,5
c) \(C=5x-x^2=-\left[x^2-2\times x\times\frac{5}{2}+\left(\frac{5}{2}\right)^2\right]+6,25\)
\(=-\left(x-\frac{5}{2}\right)^2+6,25\)
Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow-\left(x-\frac{5}{2}\right)^2\le0\)
\(\Rightarrow-\left(x-\frac{5}{2}\right)^2+6,25\le6,25\)
Dấu '' = '' xảy ra khi \(x=\frac{5}{2}=2,5\)
Vậy GTLN của C bằng 6,25 đạt được khi x = 2,5