Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
Gọi số phải tìm là ab
Vì tổng các chữ số của số cần tìm là 9 nên a+b=9(1)
Vì khi thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại nên \(10a+b+63=10b+a\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\10a+b+63=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\10a+b+63-10b-a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9a-9b=-63\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\a-b=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9-b-b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\-2b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-8=1\\b=8\end{matrix}\right.\)
Vậy: Số cần tìm là 18
Gọi phân số đó là \(\frac{\overline{abc}}{a+b+c}=k\) (Coi k như là tỉ số)
Ta có : \(k=\frac{\overline{abc}}{a+b+c}=\frac{\left(a+b+c\right)+9\left(11a+b\right)}{a+b+c}=1+\frac{99a+9b}{a+b+c}\)
Do đó, để k đạt giá trị lớn nhất thì c đạt giá trị nhỏ nhất => c = 0
Khi đó : \(k=1+\frac{99a+9b}{a+b}=1+\frac{9\left(a+b\right)+90a}{a+b}=10+\frac{90a}{a+b}\)
Để k đạt giá trị lớn nhất thì b đạt giá trị nhỏ nhất => b = 0
Khi đó : \(k=10+\frac{90a}{a}=100\)
Vậy giá trị lớn nhất của phân số đó là 100