Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = x^2 -2xy +y^2 +(x^2-2x+1)+2
= (x-y)^2 + (x-1)^2 + 2
GTNN bằng 2 khi: x-y=0 và x-1=0
Suy ra: x = y = 1
Vậy GTNN của biểu thức trên là: 2 tại x=y=1
b, = -x^2 -y^2 -1 + 2xy -2x +2y - y^2 + 8y - 16 + 17
= -(x^2 +y^2+1-2xy+2x-2y)-(y^2 -8y+16)+17
= -(x-y+1)^2 -(y-4)^2 +17
GTLN bằng 17 khi: x-y+1 =0 và y-4=0
x-4+1=0 và y=4
x=3 và y=4
Vậy GTLN của biểu thức là 17 tại x=3,y=4.
Chúc bạn học tốt.
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
\(M=\left(-4x^2+2xy-\frac{y^2}{4}\right)-x^2+2x-1-\frac{3}{4}y^2+2y-2\)
\(M=-\left(4x^2-2\cdot2x\cdot\frac{y}{2}+\frac{y^2}{4}\right)-\left(x-1\right)^2-3\left(\frac{y^2}{4}-\frac{2y}{3}\right)-2\)
\(M=-\left(2x-\frac{y}{2}\right)^2-\left(x-1\right)^2-3\left(\frac{y^2}{4}-2\cdot\frac{y}{2}\cdot\frac{2}{3}+\frac{4}{9}-\frac{4}{9}\right)-2\)
\(M=-\left(2x-\frac{y}{2}\right)^2-\left(x-1\right)^2-3\left(\frac{y}{2}-\frac{2}{3}\right)^2+\frac{4}{3}-2\)
\(M\subseteq\frac{4}{3}-2=-\frac{2}{3}\)
Dấu = xr khi/.......