K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

\(A=x\sqrt{9-x^2}\le\frac{x^2+9-x^2}{2}=4,5\)

23 tháng 1 2017

cho mình xin cái công thức dạng bài này được ko ak

25 tháng 9 2019

+ Áp dụng BĐT Cô - si :
\(\sqrt{3x-9}=\frac{3.\sqrt{3x-9}}{3}=\frac{\frac{\sqrt{9.\left(3x-9\right)}}{2}}{3}=\frac{x}{2}\)

\(\sqrt{7-x}=\sqrt{1.\left(7-x\right)}\le\frac{1+7-x}{2}=\frac{8-x}{2}\)

Cộng theo vế ta được :

\(\sqrt{3x-9}+\sqrt{7-x}\le\frac{x+8-x}{2}=4\)

Dấu " = " xảy ra \(\Leftrightarrow x=6\)

Chúc bạn học tốt !!!

\(A=\dfrac{\sqrt{x-9}}{5x}\left(ĐKx\ge9\right)\)

A'=\(\dfrac{\dfrac{5x}{2\sqrt{x-9}}-5\sqrt{x-9}}{\left(5x^2\right)}\)

\(A'=0\rightarrow5x=10\left(x-9\right)\)

            \(\rightarrow x=18\)

\(MaxA=\dfrac{1}{30}\) khi \(x=18\)

NV
6 tháng 8 2021

\(A=\dfrac{2.3\sqrt{x-9}}{30x}\le\dfrac{3^2+x-9}{30x}=\dfrac{1}{30}\)

\(A_{max}=\dfrac{1}{30}\) khi \(\sqrt{x-9}=3\Leftrightarrow x=18\)

12 tháng 11 2016

xin lỗi mk chịu

mk mới học lớp 6

nhaE@@

oOo ko biết làm oOo

huhunguyen thi thuy trang 

 

12 tháng 11 2016

Đặt \(\sqrt{x^2-2}=a\left(a\ge0\right)\)

\(\Rightarrow x^2=a^2+2\)

Thế vào ta được

\(A=-\frac{a^2+100}{a}=-\left(a+\frac{100}{a}\right)\le-2\sqrt{100}=20\)

Đạt được khi \(\orbr{\begin{cases}x=\sqrt{102}\\x=-\sqrt{102}\end{cases}}\)

1 tháng 5 2019

Quẩy lên các em êii

1 tháng 5 2019

\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)

\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)

\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)

\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

...

NV
2 tháng 3 2021

\(P=\sqrt{\left(x+2\right)\left(2x+1\right)}+2\sqrt{x+3}-2x\)

\(P\le\dfrac{1}{2}\left(x+2+2x+1\right)+\dfrac{1}{2}\left(4+x+3\right)-2x=5\)

\(P_{max}=5\) khi \(x=1\)

NV
12 tháng 5 2021

\(A=\dfrac{1}{x^2-4x+4+5}=\dfrac{1}{\left(x-2\right)^2+5}\)

Do \(\left(x-2\right)^2\ge0\) ; \(\forall x\Rightarrow\left(x-2\right)^2+5\ge5\) ; \(\forall x\)

\(\Rightarrow A\le\dfrac{1}{5}\)

\(A_{max}=\dfrac{1}{5}\) khi \(x=2\)