Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) *Trường hợp 1: a < 0
=> Vô lý vì |x| ≥ 0
=> Ko có giá trị x cần tìm
*Trường hợp 2: a ≥ 0
\(\left|x\right|=a\Rightarrow\left[{}\begin{matrix}x=-a\\x=a\end{matrix}\right.\)
b)
*Trường hợp 1: a < 0
=> Vô lý vì |x + a| ≥ 0
=> Ko có giá trị x cần tìm
*Trường hợp 2: a ≥ 0
\(\)\(\left|x+a\right|=a\)
\(\Rightarrow\left[{}\begin{matrix}x+a=a\\x+a=-a\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2a\end{matrix}\right.\)
a) - Do \(a = |x|\) nên \(a \geq 0\)
+ Xét \(a=0\)
\( \to x=0\)
+ Xét \(a>0\)
\( \to x = \pm a\)
- Vậy \(x \in \{0;\pm a\}\)
b) - Do \(a=|x+a|\) nên \(a \geq 0\)
- Xét \(a=0\)
\( \to x+0=0\)
\( \to x=0 \)
- Xét \(a>0\)
\( \to x+a=\pm a\)
\( \to x \in \{0;-2a\}\)
- Vậy \(x \in \{0;-2a\}\)
a, |x - 5| = x - 5 ( đk : x >= 5 )
<=> x - 5 = ( x - 5 )^2
<=> x - 5 = x^2 - 10x + 25
<=> x^2 - 10x + 25 - x + 5 = 0
<=> x^2 - 11x + 30 = 0
<=> x^2 - 5x - 6x + 30 = 0
<=> ( x^2 - 5x) - ( 6x - 30) = 0
<=> x ( x- 5) - 6( x- 5 ) = 0
<=> ( x- 5).(x - 6) =0
<=> Th1 : x- 5 = 0 => x = 5
Th2 : x - 6 = 0 => x = 6
khó kinh
a)Ta có :
\(\left|x-5\right|\ge0\)
\(\Rightarrow5-x\ge0\)
Mà 5 > 0
\(\Rightarrow x\ge0\)
Nên |x - 5| = 5 - x
=> x - 5 = 5 - x
=> x + x = 5 + 5
=> 2x = 10
=> x = 5
b) Ta có :
\(\left|x+3\right|\ge0\)
\(\left|x+2\right|\ge0\)
\(\Rightarrow\left|x+3\right|+\left|x+2\right|\ge0\)
\(\Rightarrow x\ge0\)
Nên |x + 3| + |x + 2| = x
=> x + 3 + x + 2 = x
=> 2x + 5 = x
=> 2x - x = -5
=> x = -5
Đề phải là \(\left|x+5\right|+\left|y-4\right|+\left|z-2\right|=0\)
Vì trị tuyệt dối luôn lớn hơn hoặc bằng 0 mà tổng các trị tuyệt đối = 0 nên
\(x+5=0\Leftrightarrow x=-5\)
\(y-4=0\Leftrightarrow y=4\)
\(z-2=0\Leftrightarrow z=2\)
Vậy \(\left(x;y;z\right)=\left(-5;4;2\right)\)
\(a.\) Vì: \(\left|x+5\right|\ge0\) \(\forall x\)
\(\Rightarrow1000-\left|x+5\right|\le1000\) \(\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow1000-\left|x+5\right|=1000\)
\(\Leftrightarrow\left|x+5\right|=1000-1000\)
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5\)
\(b.\) Vì: \(\left|x+5\right|\ge0\) \(\forall x\)
\(\Rightarrow\left|x+5\right|-1000\ge-1000\) \(\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left|x+5\right|-1000=-1000\)
\(\Leftrightarrow\left|x+5\right|=-1000+1000\)
\(\Leftrightarrow\left|x+5\right|=0\)
\(\Leftrightarrow x+5=0\)
\(\Leftrightarrow x=0-5\)
\(\Leftrightarrow x=-5\)
\(A=1000-\left|x+5\right|\)
có :
\(\left|x+5\right|\ge0\)
\(\Rightarrow-\left|x+5\right|\le0\)
\(\Rightarrow1000-\left|x+5\right|\le0\)
\(\Rightarrow Max_A=1000\)
dấu "=" xảy ra khi |x + 5| = 0
=> x + 5 = 0
=> x = -5
vậy Max A = 1000 khi x = -5