Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
16+5y-y2 = -y2\(=-y^2+2.\frac{5}{2}.y-\frac{25}{4}+\frac{89}{4}=\frac{89}{4}-\left(y-\frac{5}{2}\right)^2\)
ta thấy \(\left(y-\frac{5}{2}\right)^2\ge0\)
Suy ra 16+5y-y2 lớn nhất là bằng 89/4 khi và chỉ khi y - 5/2 = 0 <=> y = 5/2
Câu này em đã hỏi rồi
1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2 với x ≠ 22. Tìm GTLN của Bthức: C= x2 + 4x - 14 : x2 -2x +1 với x≠ 1gi... - Hoc24
1) \(P=-2x^2-12x=-2\left(x^2+6x+9\right)+18=-2\left(x+3\right)^2+18\le18\)
\(maxP=18\Leftrightarrow x=-3\)
2) \(Q=-5x^2+10x=-5\left(x^2-2x+1\right)+5=-5\left(x-1\right)^2+5\le5\)
\(maxQ=5\Leftrightarrow x=1\)
3) \(A=-3x^2+12x-6=-3\left(x^2-4x+4\right)+6=-3\left(x-2\right)^2+6\le6\)
\(maxA=6\Leftrightarrow x=2\)
4) \(B=-2x^2-24x+12=-2\left(x^2+12x+36\right)+84=-2\left(x+6\right)^2+84\le84\)
\(maxB=84\Leftrightarrow x=-6\)
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
a) x2 - 9 = 3( x - 3 )
⇔ ( x - 3 )( x + 3 ) - 3( x - 3 ) = 0
⇔ ( x - 3 )( x + 3 - 3 ) = 0
⇔ ( x - 3 ).x = 0
⇔ x - 3 = 0 hoặc x = 0
⇔ x = 3 hoặc x = 0
b) 3( 3x2 + 1 ) = 6 - 2( 3x + 2 )
⇔ 9x2 + 3 = 6 - 6x - 4
⇔ 9x2 + 6x + 3 - 6 + 4 = 0
⇔ 9x2 + 6x + 1 = 0
⇔ ( 3x + 1 )2 = 0
⇔ 3x + 1 = 0
⇔ x = -1/3
\(B=-3x^2-12x-8=-3\left(x^2+4x+4\right)+4=-3\left(x+2\right)^2+4\le4\)
Dấu \(=\)khi \(x+2=0\Leftrightarrow x=-2\).
B=-3x^2-12x-8
Ta có:-3x^2-12x-8
=-(3x^2+2.3x.2+4)+4
=-(3x+2)^2+4
Vì : (3x+2)^2 > 0
=> -(3x+2)^2 < 0
=>-(3x+2)^2+4< 4
Dấu '=' xảy ra khi (3x+2)^2=0
=>3x+2=0
=>3x=0-2
=>3x=-2
=>x=-2/3
Vậy Bmin=4 khi x=-2/3