Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=lim\frac{\left(\frac{2}{3}\right)^n+1}{3\left(\frac{1}{3}\right)^n-12}=-\frac{1}{12}\)
\(b=lim\frac{4\left(\frac{4}{10}\right)^n+1}{\left(\frac{3}{10}\right)^n-40}=-\frac{1}{40}\)
\(c=lim\frac{1-\left(\frac{2}{12}\right)^n}{1+45\left(\frac{3}{12}\right)^n}=\frac{1}{1}=1\)
\(d=\frac{\left(-\frac{2}{3}\right)^n+1}{-2\left(-\frac{2}{3}\right)^n-12+2\left(\frac{1}{3}\right)^n}=-\frac{1}{12}\)
\(e=\frac{1-11\left(\frac{1}{3}\right)^n}{\left(\frac{1}{3}\right)^n+14\left(\frac{2}{3}\right)^n}=\frac{1}{0}=+\infty\)
\(f=\frac{\left(\frac{2}{5}\right)^n-3+\left(\frac{1}{5}\right)^n}{3\left(\frac{2}{5}\right)^n+28\left(\frac{4}{5}\right)^n}=\frac{-3}{0}=-\infty\)
a/ \(=lim\frac{\left(-\frac{2}{3}\right)^n+1}{-2.\left(-\frac{2}{3}\right)^n+3}=\frac{1}{3}\)
b/ \(=lim\frac{\left(2-\frac{1}{n}\right)\left(1+\frac{1}{n}\right)\left(3+\frac{4}{n}\right)}{\left(\frac{5}{n}-6\right)^3}=\frac{2.1.3}{\left(-6\right)^3}=-\frac{1}{36}\)
c/ \(=lim\frac{5n+3}{\sqrt{n^2+5n+1}+\sqrt{n^2-2}}=\frac{5+\frac{3}{n}}{\sqrt{1+\frac{5}{n}+\frac{1}{n^2}}+\sqrt{1-\frac{2}{n}}}=\frac{5}{1+1}=\frac{5}{2}\)
d/ \(=lim\frac{5.\left(\frac{1}{2}\right)^n-6}{4.\left(\frac{1}{3}\right)^n+1}=\frac{-6}{1}=-6\)
e/ \(=-n^3\left(2+\frac{3}{n}-\frac{5}{n^2}+\frac{2020}{n^3}\right)=-\infty.2=-\infty\)
Đặt \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{n\left(n+1\right)}=A\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{n}-\frac{1}{n+1}\)
\(\Leftrightarrow A=\frac{n+1}{n+1}-\frac{1}{n+1}=\frac{n}{n+1}\)
\(a=\lim\dfrac{\left(n-2\right)!\left(n-1+\left(n-1\right)n\right)}{\left(n-2\right)!\left(\left(n+2\right)\left(n+1\right)n\left(n-1\right)-1\right)}+\lim\dfrac{3}{\left(n+2\right)!-\left(n-2\right)!}\)
\(=\lim\dfrac{n^2-1}{\left(n+2\right)\left(n+1\right)n\left(n-1\right)-1}+\lim\dfrac{3}{\left(n+2\right)!-\left(n-2\right)!}\)
\(=0+0=0\)
\(b=\lim\dfrac{2+\dfrac{1}{n}}{3^n}=\dfrac{2}{\infty}=0\)
Đáp án A, khi \(x\rightarrow1\) thì \(x-2< 0\) nên biểu thức không xác định
\(\Rightarrow\) Giới hạn đã cho ko tồn tại