Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
\(M=512-\frac{512}{2}-\frac{512}{2^2}-...-\frac{512}{2^{10}}\)
\(M=512.\left(1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\right)\)
Đặt \(A=1-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{10}}\)
\(A=1-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)
\(A=1-\left(1-\frac{1}{2^{10}}\right)\)
\(A=1-1+\frac{1}{2^{10}}\)
\(A=\frac{1}{2^{10}}\)
\(\Rightarrow M=512.\frac{1}{2^{10}}\)
\(M=\frac{512}{2^{10}}\)
Mình làm vậy không biết có đúng ko nữa!
Chúc bạn học tốt
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
\(A=\frac{2014-x}{2015-x}\)
\(\Rightarrow A=\frac{2015-x-1}{2015-x}\)
\(\Rightarrow A=1-\frac{1}{2015-x}\)
Để A có Min thì \(\frac{1}{2015-x}\)có GTLN \(\Rightarrow2015-x\)phải đạt GTNN và \(\frac{1}{2015-x}>0\)
\(\Rightarrow2015-x=1\Leftrightarrow x=2014\)
Vậy Min A = 1-1=0<=> x = 2014
\(A=\frac{2015-x-1}{2015-x}=1-\frac{1}{2015-x}\)
A nhỏ nhất khi \(\frac{1}{2015-x}>0\)lớn nhất, để \(\frac{1}{2015-x}\)lớn nhất khi 2015-x>0 nhỏ nhất. 2015-x nhỏ nhất khi x lớn nhất và x là số nguyên dương => x=2014
a) Để A có GT nhỏ nhất
=> 6-x phải có giá trị là số nguyên âm lớn nhất
=> 6-x = -1
=> x = 7
Thay x = 7 vào A ta có:
A = 2/6-7 = -2
Vậy Min A = -2 <=> x =7
b) \(\frac{2x-5}{2x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
=> Để B có giá trị nhỏ nhất thì 5/x phải có giá trị nhỏ nhất
=> x phải là số nguyên âm lớn nhất
=> x = -1
Thay x = -1 vào B ta có :
\(\frac{2\left(-1\right)-5}{-1}=\frac{-7}{-1}=7\)
Vậy Min B là 7 <=> x = -1
c) \(C=\frac{8-x}{x-3}=\frac{5+3-x}{x-3}=\frac{5-\left(x-3\right)}{x-3}=\frac{5}{x-3}-1\)
\(C_{min}\Leftrightarrow\left(\frac{5}{x-3}\right)_{min}\)
+)x>3 thì \(\frac{5}{x-3}>0\)
+)x<3 thì \(\frac{5}{x-3}<0\)
do đó chỉ xét x<3
\(\left(\frac{5}{x-3}\right)_{min}\Leftrightarrow\left(\frac{5}{3-x}\right)_{min}\Leftrightarrow\left(3-x\right)_{min}\)
<=>x=2 thỏa mãn
Khi đó \(C_{min}=\frac{5}{x-3}-1=\frac{5}{2-3}-1=-6\) tại x=2