Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
+) Với x lớn hơn hoặc bằng 0
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x+3+2x\)
\(=\left(2020+3\right)-\left(2x-2x\right)=2023\)
Vậy A có một giá trị duy nhất là 2023 với mọi x lớn hơn hoặc bằng 0
+) Với x < - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2x-\left(3+2x\right)\)
\(=2020-2x-3-2x=2017-4x\ge2017\)
Dấu "=" xảy ra \(\Leftrightarrow4x=0\Leftrightarrow x=0\left(ktm\right)\)
+) Với x = - 1
\(\Rightarrow A=2020-2x+\left|3+2x\right|=2020-2\left(-1\right)+\left|3+2\left(-1\right)\right|\)
\(=2020+2+1=2023\left(tm\right)\)
Vậy A nhỏ nhất và có một giá trị duy nhất là 2023 \(\Leftrightarrow x\ge-1\)
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
nhìu dữ
a)3/2
b)-1/3
c)-5/6
d)0
e)-1/2
Bài 2
a=3
b=1/2
c=-1/3
d=0
e=9
f=-2/3
Bài : 5
a) Ta có : A = 3 + |4 - x|
Vì : \(\left|4-x\right|\ge0\forall x\)
Nên : A = 3 + |4 - x| \(\ge3\forall x\)
Vậy Amin = 3 khi x = 4
b) Ta có : B = 5|1 - 4x| - 1
Vì \(\text{5|1 - 4x|}\ge0\forall x\)
Nên : B = 5|1 - 4x| - 1 \(\ge-1\forall x\)
Vậy Bmin = -1 khi x = 1/4
a)\(\left|2x-3\right|=6\)
\(\Rightarrow\orbr{\begin{cases}2x-3=6\\2x-3=-6\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
b)\(2.\left|3x+1\right|=5\)
\(\left|3x+1\right|=2,5\)
\(\Rightarrow\orbr{\begin{cases}3x+1=2,5\\3x+1=-2,5\end{cases}}\Rightarrow\orbr{\begin{cases}...\\...\end{cases}}\)
c)\(7,5-3\left|5-2x\right|=-4,5\)
\(3\left|5-2x\right|=12\)
\(\left|5-2x\right|=4\)
\(...\)
bạn cho nhìu ứa nên mik trả lời vài câu nha:
1.
A. Vì |x- 1/2| >=0 => Amin =0
B.Vì |x + 3/4| >=0 => B >= 2 (cộng 2 mà) => Bmin =2 khi x+ 3/4 =0 ....
các câu còn lại làm tương tự nhé