K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2018

Ta có : 

\(\left|x-1,2\right|\ge0;\left|y-\frac{3}{4}\right|\ge0\)

\(\Rightarrow\left|x-\frac{1}{2}\right|+\left|y-\frac{3}{4}\right|-1,5\ge-1,5\forall x;y\)

Dấu \("="\)

\(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y-\frac{3}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}}\)

Vậy ...

Ta có :

\(2\left|x+3\right|\ge0;3\left|y-1\right|\ge0\)

\(\Rightarrow Q=-14-2\left|x+3\right|-3\left|y-1\right|\le-14\forall x;y\)

Dấu \("="\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=0\\\left|y-1\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

Vậy ...

7 tháng 7 2018

Giá trị nhỏ nhất của B = 0

Giá trị lớn nhất của Q = -11

1 tháng 3 2016

giúp với mình sắp nạp rồi

15 tháng 6 2019

Sửa đề : a) Tìm GTNN A

a) \(A=\left|x-5\right|+3\)có : \(\left|x-5\right|\ge0\Rightarrow\left|x-5\right|+3\ge0\)

\(\Leftrightarrow A\ge3\)dấu "=" xảy ra khi : \(\left|x-5\right|=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy GTNN A = 3 khi x = 5.

b) \(C=-\left|x+1\right|+5\)có : \(-\left|x+1\right|\le0\Rightarrow-\left|x+1\right|+5\le5\)

\(\Leftrightarrow C\le5\)dấu "=" xảy ra khi : \(-\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy GTLN C = 5 khi x = -1.

\(D=5-\left|2x+3\right|\)có : \(-\left|2x+3\right|\le0\Rightarrow5-\left|2x+3\right|\le5\)

\(\Leftrightarrow D\le5\)dấu "=" xảy ra khi : \(-\left|2x+3\right|=0\Leftrightarrow2x+3=0\Leftrightarrow x=-\frac{3}{2}\)

Vậy GTLN D = 5 khi x = -3/2.

c) \(\left|x-3\right|+\left|y+1\right|=0\)có \(\left|x-3\right|\ge0;\left|y+1\right|\ge0\Rightarrow\left|x-3\right|+\left|y+1\right|\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x-3\right|=0\\\left|y+1\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1\end{cases}}.\)

15 tháng 6 2019
  • Đỗ Đức Lợi ơi
  • B=|2x+1|-4 

24 tháng 10 2017

\(A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\\ \text{Do }\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left|x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)

\(B=2-\left|x+\dfrac{5}{6}\right|\\ \text{Do }\left|x+\dfrac{5}{6}\right|\ge0\forall x\\ \Rightarrow B=2-\left|x+\dfrac{5}{6}\right|\le2\forall x\)

Dấu \("="\) xảy ra khi :

\(\left|x+\dfrac{5}{6}\right|=0\\ \Leftrightarrow x+\dfrac{5}{6}=0\\ \Leftrightarrow x=-\dfrac{5}{6}\)

Vậy \(B_{\left(Max\right)}=2\) khi \(x=-\dfrac{5}{6}\)

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

21 tháng 2 2017

Câu 3 :

Ta có ; 3.\(24^{10}\)=3.(3.\(2^3\))\(^{10}\)=3.\(3^{10}\).\(2^{30}\)=\(3^{11}.2^{30}\)=\(3^{11}.\left(2^2\right)^{15}\)=\(3^{11}.4^{15}.\)

\(3^{11}< 4^{15}\)\(\Rightarrow\)\(3^{11}.4^{15}< 4^{15}.4^{15}\)\(\Rightarrow\)\(3.24^{10}< 4^{30}\)

\(\Rightarrow\)\(3.24^{10}< 2^{30}+3^{30}+4^{30}\)

21 tháng 2 2017

Câu 5 :

Ta có :

A = \(\frac{14-x}{4-x}\) = \(\frac{10+4-x}{4-x}\)

= \(\frac{10}{4-x}+\frac{4-x}{4-x}\)

= \(\frac{10}{4-x}+1\)

Để A đạt giá trị lớn nhất

=> \(\frac{10}{4-x}\) đạt giá trị lớn nhất

=> 4-x đạt giá trị nhỏ nhất và 4 - x > 0 (1)

Vì x \(\in\) Z

=> 4 - x \(\in\) Z (2)

Từ (1) và (2) suy ra : 4 - x = 1

=> x = 4 - 1

=> x = 3

Thay x = 3 vào A ta được :

A = \(\frac{14-3}{4-3}=\frac{11}{1}=11\)

Vậy Amax = 11 <=> x = 3