K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 7 2021

\(P=\dfrac{100a+10b+c}{a+b+c}\le\dfrac{100a+100b+100c}{a+b+c}=100\)

\(P_{max}=100\) khi \(b=c=0\)

Mặt khác ta có \(\left\{{}\begin{matrix}a\ge1\\c\le9\end{matrix}\right.\) \(\Rightarrow9a\ge c\Rightarrow90a\ge10c>9c\)

\(\Rightarrow P=\dfrac{10a+90a+10b+c}{a+b+c}>\dfrac{10a+9c+10b+c}{a+b+c}=10\)

Hay \(P-10>0\)

Ta cần tìm số k lớn nhất sao cho: \(\dfrac{100a+10b+c}{a+b+c}\ge k\) đồng thời \(10< k\le100\)

\(\Leftrightarrow100a+10b+c\ge ka+kb+kc\)

\(\Leftrightarrow\left(100-k\right)a\ge\left(k-10\right)b+\left(k-1\right)c\)

Mà \(\left\{{}\begin{matrix}\left(100-k\right)a\ge100-k\\\left(k-10\right)b+\left(k-1\right)c\le\left(k-10\right).9+\left(k-1\right).9=18k-99\end{matrix}\right.\)

\(\Rightarrow100-k\ge18k-99\Rightarrow k\le\dfrac{199}{19}\)

\(\Rightarrow k=\dfrac{199}{19}\)

Hay \(P_{min}=\dfrac{199}{19}\) khi \(\overline{abc}=199\)

10 tháng 7 2021

hay quá 

10 tháng 9 2020

\(T=\frac{ab}{a+b}\)  ( ĐK : \(a;b\in N;0< a,b< 10\)

\(=\frac{10a+b}{a+b}\) 

\(=1+\frac{9a}{a+b}\) 

\(=1+\frac{9}{\frac{a+b}{a}}\) 

\(=1+\frac{9}{1+\frac{b}{a}}\) 

Để T đạt GTNN thì \(\frac{9}{1+\frac{b}{a}}\) đạt GTNN 

\(\Rightarrow1+\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) \(\frac{b}{a}\) đạt GTLN 

\(\Rightarrow\) b lớn nhất ; a nhỏ nhất 

\(\Rightarrow a=1;b=9\) 

T=\(\frac{19}{1+9}=\frac{19}{10}=1,9\) 

Vậy GTNN T = 1,9 khi và chỉ khi a = 1 ; b = 9 

24 tháng 2 2017

Đặt A = \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = 1 + \(\frac{9}{\frac{a+b}{a}}\)=  1 + \(\frac{9}{1+\frac{b}{a}}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất => 1 + \(\frac{b}{a}\) lớn nhất => \(\frac{b}{a}\) lớn nhất => b lớn nhất,a nhỏ nhất => b = 9,a = 1

Vậy Amin\(\frac{19}{1+9}\)= 1,9

MÃi mãi có một tương lai tươi sáng

7 tháng 3 2019

\(\Leftrightarrow\frac{1}{a+b+c}=\overline{0,abc}\)

\(\Leftrightarrow\frac{1000}{a+b+c}=\overline{abc}\)

\(\Leftrightarrow\overline{abc}.\left(a+b+c\right)=1000\)

vì abc là số có 3 chữ số nên

\(\Leftrightarrow\overline{abc}.\left(a+b+c\right)=500.2=250.4=200.5=125.8=100.10\)

TH1: abc=500;a+b+c=2  <=>a=5;b=0;c=0;a+b+c=2(loại);

TH2: abc=250;a+b+c=4  <=>a=2;b=5;c=0;a+b+c=4(loại);

TH3: abc=200;a+b+c=5  <=>a=2;b=0;c=0;a+b+c=5(loại);

TH4: abc=125;a+b+c=8  <=>a=1;b=2;c=5;a+b+c=8(chọn);

TH5: abc=100;a+b+c=10  <=>a=1;b=0;c=0;a+b+c=10(loại);

vậy:\(a=1;b=2;c=5\)

12 tháng 3 2019

mình cũng đồng ý với câu trả lời của Lê Văn Đăng Khoa

1 tháng 3 2020

Ta có \(\frac{ab}{bc}=\frac{b}{c}\)

Áp dụng t/c dãy tỉ số bằng nhau ta đucợ

\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{10a}{10b}=\frac{a}{b}\)( ko hiểu sao có 10a , 10b hỏi mình )

=>\(b^2=a.c\)( ko hiểu đoạn này cx hỏi mình)

Do ab nguyên tố nên b lẻ khác 5, mà b là chữ số ⇒b ∈ 1;3;7;9
+ Với b = 1 thì \(1^2\) = a.c => a = c = 1, loại vì a;b;c khác nhau
+ Với b = 3 thì \(3^2\) = a.c = 9, ta chọn được giá trị a = 1; c = 9 để ab = 13 thỏa mãn là số nguyên tố
+ Với b = 7 thì \(7^2\)= a.c = 49, ta chỉ chọn đuơc cặp giá trị a = c = 7 vì a;c là chữ số, loại vì a;c khác nhau
+ Với b = 9 thì \(9^2\)= a.c = 81, ta cũng chì chọn được cặp giá trị a = c = 9 vì a;c là chữ số, loại vì a;c khác nhau
Vậy abc = 139

6 tháng 10 2016

Điều kiện \(0< a,b,c\le9\) và \(a\ne b,\)\(b\ne c,\)\(c\ne a.\)

Ta viết lại \(\frac{\overline{ab}}{\overline{ca}}=\frac{b}{c}\)\(\Leftrightarrow\)\(\left(10a+b\right)c=\left(10c+a\right)b\)\(\Leftrightarrow\)\(10ac-10bc=ab-bc\)

\(\Leftrightarrow\)\(2.5c\left(a-b\right)=b\left(a-c\right)\)(1)

Do \(c\ne0\) và \(a\ne b\) nên \(b\left(a-c\right)\) chia hết cho 5. Xảy ra 3 trường hợp:

- TH1: \(b\) chia hết cho 5, mà \(0< b\le9\) \(\Rightarrow\)\(b=5.\)

(1) \(\Leftrightarrow\)\(2.5.c\left(a-5\right)=5\left(a-c\right)\)\(\Leftrightarrow\)\(2c\left(a-5\right)=a-c\)\(\Leftrightarrow\)\(2ac-a-9c=0\)(2)

\(\Leftrightarrow\)\(a=2ac-9c=c\left(2a-9\right)\)\(\Leftrightarrow\)\(c=\frac{a}{2a-9}\)

Mặt khác (2) \(\Leftrightarrow\)\(2ac=a+9c\)\(\Leftrightarrow\)\(2c=\frac{a+9c}{a}=1+\frac{9c}{a}=1+\frac{\frac{9a}{2a-9}}{a}=1+\frac{9}{2a-9}\)

Do \(2c>0\) nên \(2a-9>0,\) do đó \(2a-9\in\left\{3;9\right\}\)Ta có \(2a-9\ne1\) vì \(a\ne c.\)

Ta tìm được \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right).\)

- TH2: \(a-c\) chia hết cho 5 nên \(a-c=5\)\(\Rightarrow\)\(a=c+5\)

(1) \(\Leftrightarrow\)\(2c\left(c+5-b\right)=b\)\(\Leftrightarrow\)\(b=\frac{2c^2+10c}{2c+1}\)\(\Leftrightarrow\)\(2b=2c+9-\frac{9}{2c+1}\)

Suy ra \(2c+1\in\left\{3;9\right\}\) do \(c\ne0.\) Tìm được \(\left(a;b;c\right)=\left(6;4;1\right),\left(9;8;4\right).\)

- TH3: \(c=a+5\)

(1) \(\Leftrightarrow\)\(2\left(a+5\right)\left(a-b\right)=-b\)\(\Leftrightarrow\)\(b=\frac{2a^2+10a}{2a-9}\)\(\Leftrightarrow\)\(2b=2a+19-\frac{9.19}{2a-9}\)

Suy ra \(b>9,\) ta không xét.

Vậy có 4 bộ số thỏa đề bài: \(\left(a;b;c\right)=\left(6;5;2\right),\left(9;5;1\right),\left(6;4;1\right),\left(9;8;4\right).\)

6 tháng 10 2016

a;b;c=(9;5;1),(9;8;4),(6;4;1),(6;5;2)