K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

9 tháng 1 2019

GIÁ TRỊ LỚN NHẤT ,GIÁ TRỊ NHỎ NHẤT CỦẢ MỘT BIỂU THỨC 
1/ Cho biểu thức f( x ,y,...)
a/ Ta nói M giá trị lớn nhất ( GTLN) của biểu thức f(x,y...) kí hiệu max f = M nếu hai điều kiện sau đây được thoả mãn:
Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...)  M ( M hằng số) (1)
Tồn tại xo,yo ... sao cho:
f( xo,yo...) = M (2) 
b/ Ta nói m là giá trị nhỏ nhất (GTNN) của biểu thức f(x,y...) kí hiệu min f = m nếu hai điều kiện sau đây được thoả mãn :
Với mọi x,y... để f(x,y...) xác định thì :
f(x,y...)  m ( m hằng số) (1’)
Tồn tại xo,yo ... sao cho:
f( xo,yo...) = m (2’) 
2/ Chú ý : Nếu chỉ có điều kiện (1) hay (1’) thì chưa có thể nói gì về cực trị của một biểu thức chẳng hạn, xét biểu thức : A = ( x- 1)2 + ( x – 3)2. Mặc dù ta có A  0 nhưng chưa thể kết luận được minA = 0 vì không tồn tại giá trị nào của x để A = 0 ta phải giải như sau:
A = x2 – 2x + 1 + x2 – 6x + 9 = 2( x2 – 4x + 5) = 2(x – 2)2 + 2  2
A = 2 x -2 = 0  x = 2
Vậy minA = 2 khi chỉ khi x = 2
II/ TÌM GTNN ,GTLN CỦA BIỂU THƯC CHỨA MỘT BIẾN
1/ Tam thức bậc hai:
Ví dụ: Cho tam thức bậc hai P = ax2 + bx + c .
Tìm GTNN của P nếu a 0.
Tìm GTLN của P nếu a  0
Giải : P = ax2 + bx +c = a( x2 + x ) + c = a( x + )2 + c - 
Đặt c -  =k . Do ( x + )2  0 nên :
- Nếu a  0 thì a( x + )2 0 , do đó P  k. MinP = k khi và chỉ khi x = - 
-Nếu a 0 thì a( x + )2  0 do đó P  k. MaxP = k khi và chỉ khi x = - 
2/ Đa thức bậc cao hơn hai:
Ta có thể đổi biến để đưa về tam thức bậc hai
Ví dụ : Tìm GTNN của A = x( x-3)(x – 4)( x – 7)
Giải : A = ( x2 - 7x)( x2 – 7x + 12)
Đặt x2 – 7x + 6 = y thì A = ( y - 6)( y + 6) = y2 - 36  -36
minA = -36  y = 0  x2 – 7x + 6 = 0  x1 = 1, x2 = 6.
3/ Biểu thức là một phân thức :
a/ Phân thức có tử là hằng số, mẫu là tam thức bậc hai:
Ví dụ : Tìm GTNN của A = .
Giải : A = . =  = .
Ta thấy (3x – 1)2  0 nên (3x – 1) 2 +4  4 do đó    theo tính chất a  b thì    với a, b cùng dấu). Do đó   A  -
minA = -  3x – 1 = 0  x = .
Bài tập áp dụng: 
1. Tìm GTLN của BT : HD giải: .
2. Tìm GTLN của BT : HD Giải:
3. (51/217) Tìm giá trị nhỏ nhất của biểu thức: 
b/ Phân thức có mẫu là bình phương của nhị thức.
Ví dụ : Tìm GTNN của A = .
Giải : Cách 1 : Viết A dưới dạng tổng hai biểu thức không âm 
A =  = 2 +   2
minA = 2 khi và chi khi x = 2.
Cách 2: Đặt x – 1 = y thì x = y + 1 ta có :
A =  = 3 -  +  = (  -1)2 + 2
minA = 2  y = 1  x – 1 = 1  x = 2
tui chỉ có một chút thôi

27 tháng 3 2020

ko biết

NM
16 tháng 12 2020

Ta có hai trường hợp như sau :

TH1

\(x-2016\ge0\Leftrightarrow x\ge2016\) thì \(A=x-2016+x-1=2x-2017\ge2.2016-2017=2015\)

TH2

\(x-2016\le0\Leftrightarrow x\le2016\) thì \(A=2016-x+x-1=2015\)

vì vậy GTNN của A=2015

dấu bằng xảy ra khi \(x\le2016\)

23 tháng 8 2021

Ta có : \(|x-1|\ge0=>-\frac{2}{5}|x-1|\le0\)

\(=>-\frac{2}{5}|x-1|+1\le1\)

Dấu "=" xảy ra \(< =>x=1\)

Vậy Max A = 1 khi x = 1

15 tháng 3 2017

\(P\ge!x-3!+x^2+1\ge!x^2-x+3!+1\ge!\left(x-\frac{1}{2}\right)^2+\frac{3}{4}!+1\ge\frac{7}{4}\)

Đẳng thức khi y=0 ; x=1/2

14 tháng 3 2017

Giá trị nhỏ nhất là -1

Đạt được khi x=-3; 3 và y=3

18 tháng 3 2021

\(A=\left(x+2\right)^2+\left|x+2\right|+15\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

\(\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)

\(\Rightarrow A\ge15\)Dấu bằng xảy ra.

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(minA=15\Leftrightarrow x=-2\)