K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|\)

Vì \(\left|x+\frac{3}{2}\right|\ge0\)

Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)

\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|=x+\frac{3}{2}\)

14 tháng 3 2016

A) |x-7|>/0 

dấu "=" xảy ra tại x=7

khi đó A=|7-7|+6-7=6-7=-1

vậy GTNN của A=-1 tại x=7

14 tháng 3 2016

b) |x-2/3|>/0

dấu"=" xảy ra khi |x-2/3|=0 khi đó x=2/3

ta có: B=2/3+1/2-|2/3-2/3|=7/67/6-0=7/6

vậy GTLN của B=7/6 tại x=2/3

1 tháng 1 2017

GTLN:A=11

GTNN:B=2

CÒN GTLN CÂU B KO TIM ĐƯỢC

        GTNN CÂU A KO TÌM ĐƯỢC

2 tháng 7 2019

\(a,A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)-2018\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)-2018\)

Đặt \(x^2+5x=a\)

\(\Rightarrow A=\left(a-6\right)\left(a+6\right)-2018=a^2-2054\)

\(\Rightarrow A_{min}=2054\Leftrightarrow a=0\)

\(\Rightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow x\in\left\{0;-5\right\}\)

2 tháng 7 2019

\(b,B=\left(x-1\right)\left(x-4\right)\left(x-5\right)\left(x-8\right)+2018.\)

\(=\left(x^2-9x+8\right)\left(x^2-9x+20\right)+2018\)

Đặt \(x^2-9x+14=a\)

\(\Rightarrow B=\left(a-6\right)\left(a+6\right)+2018\)

\(=a^2-36+2018=a^2+1982\)

\(\Rightarrow B_{min}=1982\Leftrightarrow a^2=0\Rightarrow a=0\)

\(\Rightarrow x^2-9x+14=0\)

\(\Rightarrow x^2-2x-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Rightarrow x\in\left\{2;7\right\}\)

18 tháng 3 2021

\(A=\left(x+2\right)^2+\left|x+2\right|+15\)

Ta có:

\(\left(x+2\right)^2\ge0\forall x\)

\(\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)

\(\Rightarrow A\ge15\)Dấu bằng xảy ra.

\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy \(minA=15\Leftrightarrow x=-2\)

14 tháng 8 2020

Các bài này em áp dụng công thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\). Dấu "=" xảy ra khi tích \(a.b\ge0\),

a) Ta có : \(x-y=3\Rightarrow x=3+y\).

Do đó : \(B=\left|x-6\right|+\left|y+1\right|\)

\(=\left|3+y-6\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

\(\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(3-y\right)\left(y+1\right)\ge0\)

\(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

Vậy giá trị nhỏ nhất của \(B=4\) \(\Leftrightarrow\hept{\begin{cases}-1\le y\le3\\2\le x\le6\end{cases},x-y=3}\)

b) Ta có : \(x-y=2\Rightarrow x=2+y\)

Do đó \(C=\left|2x+1\right|+\left|2y+1\right|\)

\(=\left|2y+5\right|+\left|2y+1\right|=\left|-2y-5\right|+\left|2y+1\right|\)

\(\ge\left|-2y-5+2y+1\right|=4\)

Các câu khác tương tự nhé em !

14 tháng 8 2020

Làm nốt câu c

                                                  Bài giải

c, Ta có : 

\(D=\left|2x+3\right|+\left|y+2\right|+2\ge\left|2x+3+y+2\right|+2=\left|3+3+2\right|+2=8+2=10\)

Dấu " = " xảy ra khi \(2x+y=3\)

Vậy \(\text{​​Khi }2x+y=3\text{​​ }Min_D=10\)

29 tháng 10 2016

GTNN A= 2 khi x=2016