Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= x2-2x = ( x2-2x + 1 ) - 1 = -1 (x-1)2 . Vì (x-1)2 lớn hơn hoặc bằng 0 ==> Min A = 1. Khi x = 1
B = -( x2- 4x + 4 +1) = -1-(x-2)2 < -1 ==> Max B = - 1 khi x = 2
Phân tích đa thức x4 + 6x3+11x2+6x = x(x+1)(x+2)(x+3) thành nhân tử tích của 4 số tự nhiên liên tiếp chia hết cho 24
\(D=x^2+5y^2-2xy+4y+3\)
\(=x^2-2xy+y^2+4y^2+4y+1+2\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)+2\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2+2\)
Vì \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(2y+1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(2y+1\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{1}{2}\)
Vậy \(D_{min}=2\Leftrightarrow x=y=-\dfrac{1}{2}\)
(a + 1)(a + 3)(a + 5)(a + 7)+15 = (a + 1)(a + 7)(a + 5)(a + 3)+15 = (a2 + 8a +7)(a2 + 8a +15) + 15
Đặt a2 + 8a + 11 = x => (a2 + 8a +7)(a2 + 8a +15) + 15 = (x-4)(x+4) +15 = x2 - 4 + 15 = x2 +11 \(\ge\)11
GTNN (a + 1)(a + 3)(a + 5)(a + 7) + 15 = 11 \(\Leftrightarrow\)x =0 \(\Leftrightarrow\)a2 + 8a + 11 = 0 \(\Leftrightarrow\)(a + 4)2 -5 = 0 \(\Leftrightarrow\)(a + 4 +\(\sqrt{5}\))(a + 4 -\(\sqrt{5}\))=0 \(\Leftrightarrow\)a = -4+ \(\sqrt{5}\)hoặc a = -4 - \(\sqrt{5}\)
Đặt x = 4 - m; y = 4 + m
=> x2 + y2 = (4 - m)2 + (4 + m)2 = 16 - 8m + m2 + 16 + 8m + m2 = 32 + 2m2
Vì m2 >= 0 => 2m2 >= 0
=> 32 + 2m2 >= 32
Dấu bằng xảy ra khi: m2 = 0 => m = 0
Vậy x2 + y2min = 32 <=> x = y = 4
Ta có: \(x+y=4\) \(\Rightarrow\) \(y=4-x\)
Do đó: \(A=x^2+y^2=x^2+\left(4-x\right)^2=x^2+16-8x+x^2=2x^2-8x+16=2\left(x^2-4x+4\right)+8\)
\(A=2\left(x-2\right)^2+8\ge8\) với mọi \(x;y\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\left(x-2\right)^2=0\)
\(\Leftrightarrow\) \(x-2=0\)
\(\Leftrightarrow\) \(x=2\)
\(\Rightarrow\) \(y=2\) (do \(x+y=4\) )
Vậy, \(Min\) \(A=8\) \(\Leftrightarrow\) \(x=y=2\)
\(Q=3xy\left(x+3y\right)-2xy\left(x+4y\right)-x^2\left(y-1\right)+y^2\left(1-x\right)+36\)\(\Leftrightarrow Q=3x^2y+9xy^2-2x^2y-8xy^2-x^2y+x^2+y^2-xy^2+36\)\(\Leftrightarrow Q=\left(3x^2y-2x^2y-x^2y\right)+\left(9xy^2-8xy^2-xy^2\right)+x^2+y^2+36\)\(\Leftrightarrow Q=x^2+y^2+36\ge36\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy Min Q là : \(36\Leftrightarrow x=y=0\)