Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
\(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) ĐKXĐ : x > 0 , x khác 9
\(A=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{\sqrt{x}+3}.\frac{1}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{x+4\sqrt{x}+4}\)
\(A=\frac{-3\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)
a) ĐKXĐ : x>hoặc = 0 ; x khác 9
Còn câu b,c,d để vài bữa mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá !
----------------- -Học tốt-----------------
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.
a) ĐK: \(x-9\ne0\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\)
Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3>0\)
Nên \(\sqrt{x}-3\ne0\Leftrightarrow x\ne9\)
b) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right)\)
\(=\left[\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(=\left[\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]\left(\frac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)
\(=\left(\frac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\right)\left(\frac{1}{\sqrt{x}+1}\right)\)
\(=\frac{-3}{\sqrt{x}+3}\)
c) Ta có: \(\sqrt{x}+3\ge3\)
\(\Rightarrow\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)
\(\Rightarrow\frac{-3}{\sqrt{x}+3}\ge-1\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(P_{min}=-1\) khi \(x=0\)
d) \(\frac{-3}{\sqrt{x}+3}< \frac{-1}{3}\)
\(\Leftrightarrow-\left(\sqrt{x}+3\right)< -9\)
\(\Leftrightarrow-\sqrt{x}< -6\)
\(\Leftrightarrow\sqrt{x}>6\)
\(\Leftrightarrow x>36\)
e) Thế \(x=3-2\sqrt{2}\) vào P ta được:
\(\frac{-3}{\sqrt{3-2\sqrt{2}}+3}=\frac{-3}{\sqrt{2}-1+3}=\frac{-3}{\sqrt{2}+2}=\frac{-3\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}=\frac{6-3\sqrt{2}}{-2}=\frac{3\sqrt{2}-6}{2}\)
f) \(P=\frac{-3}{\sqrt{x}+3}=-2\Leftrightarrow\sqrt{x}+3=6\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\)