K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2021

Vì ( 2x + 7 )2 ≥ 0 ∀ x

\(\Rightarrow E=\left(2x+7\right)^2+\frac{2}{5}\ge\frac{2}{5},\forall x\)

Dấu "=" xyar ra <=> 2x + 7 = 0

<=> 2x = -7

<=> x = -3,5

27 tháng 3 2020

a) Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow A=\left(x+1\right)^2-3\ge-3\)

Dấu " = " xảy ra khi 

\(\left(x+1\right)^2=0\)

\(x+1=0\)

\(x=-1\)

Vậy \(x=-1\)khi \(GTNN=-3\)

B:C: tương tự

d) Ta có: \(\left(2x-1\right)^{18}\ge0\forall x\)

              \(\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow D=\left(2x-1\right)^{18}+\left(y+2\right)^2+7\ge7\)

Dấu " = " xảy ra khi \(\hept{\begin{cases}\left(2x-1\right)^{18}=0\\\left(y+2\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}}\)

Vậy \(x=\frac{1}{2};y=-2\)khi \(GTNN=7\)

e) \(\left|-2x+6\right|\ge0\)

\(\Rightarrow E=\left|-2x+6\right|+12\ge12\)

Dấu " = " xảy ra khi \(\left|-2x+6\right|=0\Rightarrow-2x=-6\Rightarrow x=3\)

Vậy x = 3 khi đạt GTNN = 12

F ; G tương tự

hok tốt!!

27 tháng 3 2020

+) A=(x+1)2 - 3  

Vì  (x+1)2 \(\ge\)0 nên (x+1)2 - 3 \(\ge\) - 3 .Dấu "=" xảy ra \(\Leftrightarrow\)(x+1)2 = 0   \(\Leftrightarrow\)x = - 1

Vậy min A = - 3 khi x = -1

+) B=(2x-5)20 + 9  

Vì (2x-5)20 \(\ge\)0 nên (2x-5)20+9\(\ge\)9.Dấu "=" xảy ra \(\Leftrightarrow\)(2x - 5)20=0    \(\Leftrightarrow\)x=\(\frac{5}{2}\)

Vậy min B=9 khi x=\(\frac{5}{2}\)

Những phần khác cũng làm tương tự :

+) minC= - 5 khi x=\(\frac{4}{3}\)

+) minD= 7 khi x=\(\frac{1}{2}\)và y= - 2

+) minE=12 khi x=3

+) min F = -17 khi x=5

+) min G = -12 khi x= - 4

12 tháng 9 2021

a) \(A=\left|x-5\right|+\left|x-7\right|=\left|x-5\right|+\left|7-x\right|\ge\left|x-5+7-x\right|=\left|2\right|=2\)

\(minA=2\Leftrightarrow\)\(7\ge x\ge5\)

b) \(B=\left|2x+1\right|+\left|2x-2\right|=\left|2x+1\right|+\left|2-2x\right|\ge\left|2x+1+2-2x\right|=\left|3\right|=3\)

\(minB=3\Leftrightarrow1\ge x\ge-\dfrac{1}{2}\)

12 tháng 9 2021

Mình cảm ơn ạ

23 tháng 4 2017

a/ mk chua tim ra , thong cam 

b/ mk tìm n = -2 ., -1 hoặc 0

14 tháng 3 2016

A) |x-7|>/0 

dấu "=" xảy ra tại x=7

khi đó A=|7-7|+6-7=6-7=-1

vậy GTNN của A=-1 tại x=7

14 tháng 3 2016

b) |x-2/3|>/0

dấu"=" xảy ra khi |x-2/3|=0 khi đó x=2/3

ta có: B=2/3+1/2-|2/3-2/3|=7/67/6-0=7/6

vậy GTLN của B=7/6 tại x=2/3

4 tháng 9 2021

a) Do \(\left|1+2x\right|\ge0\Rightarrow\dfrac{-1}{4}\left|1+2x\right|\le0\)

\(\Rightarrow A=2,25-\dfrac{1}{4}\left|1+2x\right|\le2,25\)

\(maxA=2,25\Leftrightarrow x=-\dfrac{1}{2}\)

b) Do \(\left|2x-3\right|\ge0\Rightarrow3+\dfrac{1}{2}\left|2x-3\right|\ge3\)

\(\Rightarrow B=\dfrac{1}{3+\dfrac{1}{2}\left|2x-3\right|}\le\dfrac{1}{3}\)

\(maxB=\dfrac{1}{3}\Leftrightarrow x=\dfrac{3}{2}\)

4 tháng 9 2021

mình ghi nhầm đề bài là Tìm giá trị lớn nhất nhé

17 tháng 5 2016

\(P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2\)

Nhan xet: \(3x^2\ge0;15y^2\ge0\)

=> \(3x^2+15y^2\ge0\) => \(P\ge0\)

GTNN cua P la 0 khi x=y=0

$P=3x^2-xy-10xy+15y^2+11xy=3x^2+15y^2$

Nhan xet: $3x^2\ge0;15y^2\ge0$

=> $3x^2+15y^2\ge0$ => $P\ge0$GTNN cua P la 0 khi x=y=0

7 tháng 8 2016

a)Ta có : /a+b/ \(\le\)/a/+/b/ ( dấu bằng xảy ra <=> 0 \(\le\)ab) (1)

A= /x+2/+/x-3/

   =/x+2/+/3-x/

Theo (1 ) ta được : /x+2+3-x/ \(\le\)/x+2/ +/3-x/

=> 5 \(\le\)/x+2/+/3-x/ hay 5 \(\le\)/x+2/+/x-3/ = A

Vậy GTNN của A là 5 x=-2 hoặc x=3

b)GTNN của B là 9

7 tháng 8 2016

a) Ta có: /x - 3/ = /3 - x/

=>A = /x + 2/ + /x - 3/ = /x + 2/ + /3 - x/ lớn hơn hoặc bằng /x + 2 + 3 - x/

Mà  /x + 2 + 3 - x/ = /5/ = 5

=>A lớn hơn hoặc bằng 5

Đẳng thức xảy ra khi: (x + 2)(3 - x)=0

=>x = -2 hoặc x = 3

Vậy giá trị nhỏ nhất của A là 5 khi x = -2 hoặc x = 5