K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

bài dễ ợt mà làm ko đc

4 tháng 1 2017

Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)

=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)

Ta xét các trường hợp: 

TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)

TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)

TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)

Vậy (x;y;z) là các hoán vị của (1;2;3)

8 tháng 3 2017

a,Vì (x-2)^2>=0 với mọi giá trị của x thuộc R

nên GTNN của (x-2)^2 là 0 khi x=2

b,Vì (2x-1)^2>=0 với mọi giá trị của x thuộc R

Nên (2x-1)^2+1>=1

GTNN của (2x-1)^2+1 là 1 khi 2x-1=0 hay x=1/2

c,GTNN của (2x+1)^4-3 là -3 khi x=-1/2

Bạn trình bày như các câu trên nha

d, (x^2-9)^4 >=0

/y-4/>=0

suy ra (x^2-9)^4+/y-4/-1>=1

GTNN của (x^2-9)^4+/y-4/-1 là -1 khi x^2-9=0 và y-4=0

Hay x=+-3 và y=4

8 tháng 3 2017

thank nhưng bn ơi phần d y=2 nhỉ

23 tháng 4 2022

\(a.A=\left(x-2\right)^2+\left(y+1\right)^2+1\ge1\forall x;y\) . " = " \(\Leftrightarrow x=2;y=-1\) 

b.\(B=7-\left(x+3\right)^2\le7\forall x\)  " = " \(\Leftrightarrow x=-3\)

c.\(C=\left|2x-3\right|-13\ge-13\forall x\)  " = " \(\Leftrightarrow x=\dfrac{3}{2}\)

d.\(D=11-\left|2x-13\right|\le11\forall x\)  " = " \(\Leftrightarrow x=\dfrac{13}{2}\)

23 tháng 4 2022

:o

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|\)

Vì \(\left|x+\frac{3}{2}\right|\ge0\)

Vậy \(GTNN_A=0\)tại \(x=\frac{-3}{2}\)

\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)

Vì \(\left|x-\frac{1}{2}\right|\ge0\)nên \(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(GTNN_B=\frac{3}{4}\)tại \(x=\frac{1}{2}\)

1 tháng 7 2019

\(A=\left|x+\frac{3}{2}\right|=x+\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
21 tháng 5 2021

Lời giải:

1.

\(M(x)=A(x)-2B(x)+C(x)\)

\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)

\(=5x^4+2x^2-\frac{21}{16}\)

2.

Khi $x=-\sqrt{0,25}=-0,5$ thì:

\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)

3)

$M(x)=0$

$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$

$\Leftrightarrow 80x^4+32x^2-21=0$

$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$

$\Leftrightarrow (4x^2+3)(20x^2-7)=0$

Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$

$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$

Đây chính là giá trị của $x$ để $M(x)=0$