Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=x^2+2.x.5/2+25/4+3/4
=(x+5/2)2+3/4
nx:(x+5/2)^2 luôn> hoặc = 0 nên (x+5/2)^2+3/4 >hoặc =3/4
vậy GTNN của A là 3/4
b,B=6x-x2-5
= - (x2-6x+5)
= - (x2-2.x.3+9-4)
=-[(x-3)2-4]
=-(x-3)^2+4
nx; -(x-3)^2 luôn nhỏ hơn hoặc bằng 0 nên -(x-3)^2 +4 luôn < hoặc= 4
Vậy GTLN của B là 4
V1.a)Ta có : \(A=x^2+5x+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Ta có : \(\left(x+\frac{5}{2}\right)^2\ge0=>\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "="xảy ra khi \(x+\frac{5}{2}=0=>x=-\frac{5}{2}\)
Vậy\(A_{min}=\frac{3}{4}\) khi \(x=-\frac{5}{2}\)
b)Ta có : \(B=6x-x^2-5=-\left(x^2-6x+5\right)=-[\left(x-3\right)^2-4]\)
Ta có : \(\left(x-3\right)^2\ge0=>B\le4\)
Dấu "="xảy ra khi (x-3)=0=>x=3
Vậy \(B_{mãx}=4\)khi x=3
Bài 1: Tìm giá trị:
a) Nhỏ nhất của biểu thức: A = x2 + 5x + 7
Giải phương trình trên máy tính
Lặp 3 lần dấu" = "
kq : GTNN của A = \(-\frac{5}{2}\)
b) Lớn nhất của biểu thức: B = 6x - x2 - 5
B = -x2 + 6x - 5
Giải phương trình trên máy tính
Lặp 3 dấu " = "
kq : GTLN của B = 3
A=x^2+5x+7
A=x^2+2.x.5/2+25/4+3/4
A=(x+5/2)^2+3/4>= 3/4
Vậy Min A=3/4 <=> x=-5/2
ấ ở đây nhé !
Mình có làm bài tìm giá trị lớn nhất trong đây rùi nhé !
\(A=x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}+\frac{3}{4}\)
\(A=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{5}{2}\right)^2\ge0\)với mọi x =>\(A\ge\frac{3}{4}\)
nên Min A=3/4 khi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\Rightarrow x=-\frac{5}{2}\)
Vậy Min A=3/4 \(\Leftrightarrow\)x=-5/2
B = x2 - 5x + 7
B = \(\left(x^2-2.\frac{5}{2}.x+\frac{25}{4}\right)+\frac{3}{4}\)
B = \(\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\)
Dễ thấy : \(\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow Min_B=\frac{3}{4}\)
\(\Leftrightarrow x=\frac{5}{2}\)