Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2+20y^2+8xy-4y+2015\)
\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2014\)
\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2014\ge2014\forall x\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x+4y=0\\2y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}}\)
Vậy GTNN của A là 2014 khi \(x=-2,y=\frac{1}{2}\)
\(B=\frac{x^2-2x+2016}{x^2}\)
\(=\frac{2016x^2-2.x.2016+2016^2}{2016x^2}\)
\(=\frac{\left(x^2-2.x.2016+2016^2\right)+2015x^2}{2016x^2}\)
\(=\frac{\left(x-2016\right)^2+2015x^2}{2016x^2}=\frac{\left(x-2016\right)^2}{2016x^2}+\frac{2015}{2016}\ge\frac{2015}{2016}\forall x\)
Dấu "=" xảy ra khi: \(x-2016=0\Rightarrow x=2016\)
Vậy GTNN của B là \(\frac{2015}{2016}\)khi x = 2016
\(P=x^2+20y^2+8xy-4y+2009\)
\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)
\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)
Vì: \(\begin{cases}\left(x+4y\right)^2\ge0\\\left(2y-1\right)^2\ge0\end{cases}\)\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2\ge0\)
\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2+2008\ge2008\)
Vậy GTNN của bt trên là 2008 khi \(\begin{cases}x+4y=0\\2y-1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}\)
\(D=x^2+20y^2+8xy-4y+2009\)
\(\Leftrightarrow D=x^2+16y^2+4y^2+8xy-4y+1+2008\)
\(\Leftrightarrow D=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)
\(\Leftrightarrow D=\left[x^2+2.x.4y+\left(4y\right)^2\right]+\left[\left(2y\right)^2-2.2y.1+1^2\right]+2008\)
\(\Leftrightarrow D=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)
Vậy GTNN của \(D=2008\) khi \(\left\{{}\begin{matrix}x+4y=0\\2y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+4.\left(0,5\right)=0\\y=0,5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=0,5\end{matrix}\right.\)
a) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(\Leftrightarrow C=x^2-4xy+4y^2+y^2+10x-20y-2y+1+25+2\)
\(\Leftrightarrow C=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+2+25\)
\(\Leftrightarrow C=\left(x-2y\right)^2+10\left(x-2y\right)+\left(y-1\right)^2+2+25\)
\(\Leftrightarrow C=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y-1\right)^2+2\)
\(\Leftrightarrow C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Vậy GTNN của \(C=2\) khi \(\left\{{}\begin{matrix}x-2y+5=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-2.1+5=0\\y=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
Lời giải:
Ta có:
$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$
$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$
$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$
$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$
$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$
Vậy $P_{\min}=5$. Giá trị này đạt tại:
$x+y+\frac{1}{2}=x+2=0$
$\Leftrightarrow x=-2; y=\frac{3}{2}$
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a. \(A=10x-x^2+1974\)
\(=-\left(x^2-10x+25-25-1974\right)\)
\(=-\left(x-5\right)^2+1999\)
Ta có: \(-\left(x-5\right)^2\le0\Rightarrow-\left(x-5\right)^2+1999\le1999\)
Vậy GTLN của A là 1999 tai x-5=0 => x=5
b. \(B=x^2+20y^2+8xy-4y+2009\)
\(=\left(x^2+8xy+16y^2\right)+\left(4y^2-4y+1\right)+2008\)
\(=\left(x+4y\right)^2+\left(2y-1\right)^2+2008\)
Ta có : \(\left(x+4y\right)^2\ge0;\left(2y-1\right)^2\ge0\)
\(\Rightarrow\left(x+4y\right)^2+\left(2y-1\right)^2+2008\ge2008\)
Vậy GTNN của B là 2008 tại x+4y=0 và 2y-1=0\(\Rightarrow x+4y=0;y=\frac{1}{2}\)
\(\Rightarrow x=-2;y=\frac{1}{2}\)
P=x2+20y2+8xy-4y+2009=(x2+8xy+16y2)+(4y2-4y+1)+2008=(x+4y)2+(2y-1)2+2008 \(\ge\)2008
Dấu "=" xảy ra khi x=-2;y=1/2
Vậy min P=2008