Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)
\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{4}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)
\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)
\(A=\left(x^2-2xy+y^2\right)+2\left(x-y\right)+1+y^2-8y+16-17\\ A=\left(x-y+1\right)^2+\left(y-4\right)^2-16\ge17\)
Vậy \(A_{min}=17\leftrightarrow\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
A= x2+2y2-2xy-2x-2y+1015
A = x2 - 2xy - 2x + y2 + 2y + 1 + y2 - 4y + 4 + 1010
A = [x2 - 2x(y + 1) + (y+1)2 ] + (y-2)2 + 1010
A = ( x - y - 1)2 + (y-2)2 + 1010 \(\ge1010\forall x,y\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy MinA = 1010 <=> \(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
ko có 2x2 đâu mik thấy đề bài nó ghi như thế. bn giúp mik nhé!
\(x^2-2x+y^2+4y+8=x^2-2x+1+y^2+4y+4+3=\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\)
\(MinE=3\Leftrightarrow x=1;y=-2\)
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)