K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2016

Bạn nên nhớ GTTĐ cuả một số của một số bất kì luôn lớn hơn hoặc bằng 0

Bình phương của một số cũng vậy.

1. a) do |x-3| >= 0 với mọi x

nên (-18 + |x-3| ) >= -18

Vậy GTNN của A là -18. Dấu bằng xảy ra khi x - 3 = 0.

câu này phải là GTLN nhé bạn

b) tương tự x2 >= 0 với mọi giá trị của x

=> -x2 <= 0 với mọi x

nên 14 + (-x2) <= 14 hay B<= 14

Vậy GTLN của B là 14. dấu bằng xảy ra khi x2= 0 hay x = 0

c) (x+1)2 >= 0 với mọi x nên 2(x+1)2 >= 0

suy ra C>= -17

dấu = xảy ra khi x + 1 = 0 hay x = -1

bài 2.

a) |a - 30| >=0 với mọi... nên -|a-30|<= 0

|b + 20| >=0 nên -|b+20|<= 0

vây A <= 0 + 0+ 2011 = 2011

vậy GTLN của A là 2011 khi a-30=0 và b+20 = 0 hay a = 30 và b = -20

b)

c) (x-2)2>=0 nên -(x-2)2<=0

vậy C <= 25 + 0 = 25

dấu =.... khi x - 2 = 0 hay x = 2 

18 tháng 1 2016

a-18

b,kho tinh duoc

c-17

a2011

b14

c25

tich cai

 

23 tháng 10 2021

Bài 4:

\(A=2x^2-15\ge-15\\ A_{min}=-15\Leftrightarrow x=0\\ B=2\left(x+1\right)^2-17\ge-17\\ B_{min}=-17\Leftrightarrow x=-1\)

Bài 5:

\(A=-x^2+14\le14\\ A_{max}=14\Leftrightarrow x=0\\ B=25-\left(x-2\right)^2\le25\\ B_{max}=25\Leftrightarrow x=2\)

23 tháng 10 2021

mik chưa học giá trị lớn nhất là max và giá trị nhỏ nhất là min nên bạn cho mik kí hiệu khác nha

20 tháng 2 2018

a)-19

b)22

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

a: -x^2<=0

=>-x^2+1<=1

=>A<=1

Dấu = xảy ra khi x=0

b: (x+1)^2>=0

=>-2(x+1)^2<=0

=>B<=8

Dấu = xảy ra khi x=-1

15 tháng 7 2021

a, Ta có : \(A=4-\left|2x+5\right|\le4\)

Dấu ''='' xảy ra khi x = -5/2 

Vậy GTLN A là 4 khi x = -5/2 

b, Ta có : \(\left|x-1\right|+5\ge5\)

\(\Rightarrow\dfrac{1}{\left|x-1\right|+5}\le\dfrac{1}{5}\)

Dấu ''='' xảy ra khi x = 1 

Vậy GTLN B là 1/5 khi x = 1

c, \(C=4-\left|x-2\right|-\left|3y+6\right|\le4\)

Dấu ''='' xảy ra khi x = 2 ; y = -2 

Vậy GTLN C là 4 khi x = 2 ; y = -2

\(A=x^2+14\)

Ta có: \(x^2\ge0\forall x\in R\)

\(\Rightarrow A=x^2+14\le14\)

Dấu " = " xảy ra khi \(x=0\)

Khi đó: \(A=0+14=14\)

Vậy \(x=0\)khi đạt \(GTNN=14\)

\(B=\left(x+1\right)^2-12\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\in R\)

\(\Rightarrow B=\left(x+1\right)^2-12\ge-12\)

Dấu " =" xảy ra khi \(\left(x+1\right)^2=0\Rightarrow x+1=0\Rightarrow x=-1\)

Vậy \(x=-1\)khi đạt \(GTNN=-12\)

\(C=\left|x-5\right|+15\)

Ta có: \(\left|x-5\right|\le0\forall x\in R\)

\(\Rightarrow C=\left|x-5\right|+15\ge15\)

Dấu " = " xảy ra khi \(\left|x-5\right|=0\Rightarrow x=5\)

Vậy \(x=5\)khi đạt \(GTNN=15\)

\(D=\left|x-2\right|+\left|y+5\right|+19\)

Ta có: \(\left|x-2\right|\ge0\forall x\in R\)

          \(\left|y+5\right|\ge0\forall y\in R\)

\(\Rightarrow D=\left|x-2\right|+\left|y+5\right|+19\ge19\)

Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2\right|=0\\\left|y+5\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=-5\end{cases}}}\)

Vậy \(x=2;y=-5\)khi đạt \(GTNN=19\)

hok tốt!!

22 tháng 3 2020

đúng ko đấy