K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

A=(x+1)*(x+2)*(x+3)*(x+4)

Ta có (x+1);(x+2);(x+3) và (x+4) sẽ xảy ra các trường hợp sau 

Th1:(x+1);(x+2);(x+3) và (x+4) đều là số âm

Nên tích (x+1)*(x+2)*(x+3)*(x+4) sẽ là số dương

Hay (x+1)*(x+2)*(x+3)*(x+4)>0

Th2:1 trong các số (x+1);(x+2);(x+3);(x+4) sẽ=0

Nên (x+1)*(x+2)*(x+3)*(x+4)=0

Th2:các số (x+1);(x+2);(x+3);(x+4) đều là số dương 

Nên (x+1)*(x+2)*(x+3)*(x+4)>0

Trong các trường hợp trên thì ta thấy trường hợp có GTNN là th2 nên biểu thức A sẽ có giá trị nhỏ nhất là 0(tick nha)

12 tháng 7 2016

A=(x+1)(x+2)(x+3)(x+4)=(x+1)(x+4)(x+2)(x+3)=(x^2+5x+4)(x^2+5x+6)

Đặt x^2+5x=t =>A=(t+4)(t+6)=t^2+10t+24=(t+5)^2-1 lớn hơn hoặc bằng -1 

Dấu bằng xảy ra khi t=-5 từ đó giải ra x

 

1 tháng 1 2020

Ta có x + y = 2 ⇒ y = 2 - x ≥ 0 ⇒ 0 ≤ x ≤ 2 . Thay y = 2 - x và biểu thức P ta được

P = 1 3 x 3 + x 2 + 2 - x 2 - x + 1 = 1 3 x 3 + 2 x 2 - 5 x + 5 = f x

với  x ∈ 0 ; 2

Đạo hàm  f ' x = x 2 + 4 x - 5 = 0 ⇔ x = 1 x = - 5

Do x ∈ 0 ; 2  nên loại x = -5

f 1 = 7 3 ; f 0 = 5 ; f 2 = 17 3  

Vậy m i n x ∈ 0 ; 2 P = m i n x ∈ 0 ; 2 f x = 7 3  khi và chỉ khi x = 1

Đáp án B

24 tháng 11 2018

16 tháng 7 2018

17 tháng 4 2017

Đáp án C.

Ta có:

G T ⇔ 5 x + 2 y + x + 2 y − 3 − x − 2 y = 5 x y − 1 − 3 1 − x y + x y − 1.

Xét hàm số

f t = 5 t + t − 3 − t ⇒ f t = 5 t ln 5 + 1 + 3 − t ln 3 > 0   ∀ t ∈ ℝ

Do đó hàm số đồng biến trên ℝ  suy ra f x + 2 y = f x y − 1 ⇔ x + 2 y = x y − 1

⇔ x = 2 y + 1 y − 1 ⇒ T = 2 y + 1 y − 1 + y . Do x > 0 ⇒ y > 1  

Ta có:  T = 2 + y + 3 y − 1 = 3 + y − 1 + 3 y − 1 ≥ 3 + 2 3 .

10 tháng 12 2017

Ta có : H = |x - 3| - |4 + x| \(\ge\left|x-3-4-x\right|=-7\)

Vậy GTNN của biểu thức là -7 

23 tháng 9 2018

hc3,,a x x

28 tháng 1 2016

a)IxI>=0 =>2+IxI>=2 =>Dmin=2 khi x= 0

 

24 tháng 5 2019

Đáp án là C