Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
x+y=1=>y=1-x
\(Q=2x^2-y^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-x\right)^2+x+\frac{1}{x}+2020\)\(=2x^2-\left(1-2x+x^2\right)+x+\frac{1}{x}+2020\)\(=2x^2-1+2x-x^2+x+\frac{1}{x}+2020\)
\(=\left(x^2+2x+1\right)+\left(x+\frac{1}{x}\right)+2018\)\(=\left(x+1\right)^2+\left(x+\frac{1}{x}\right)+2018\)
Ta có: \(\left(x+1\right)^2\ge0\forall x>0\)
Áp dụng BĐT Cô-si cho 2 số dương \(x\)và \(\frac{1}{x}\):
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\)
\(\Rightarrow Q\ge2+2018=2020\)
Dấu '=' xảy ra \(\Leftrightarrow\hept{\begin{cases}x+1=0\\x=\frac{1}{x}\end{cases}\Leftrightarrow x=-1}\)\(\Rightarrow y=1-\left(-1\right)=2\)
Vậy \(minQ=2020\Leftrightarrow x=-1;y=2\)
\(A=3x^2+y^2+2xy+4x\)
\(=\left(2x^2+4x+2\right)+\left(x^2+y^2+2xy\right)-2\)
\(=2\left(x^2+2x+1\right)+\left(x+y\right)^2-2\)
\(=2\left(x+1\right)^2+\left(x+y\right)^2-2\)
Dễ thấy: \(2\left(x+1\right)^2+\left(x+y\right)^2\ge0\)
\(\Rightarrow2\left(x+1\right)^2+\left(x+y\right)^2-2\ge-2\)
Xảy ra khi \(\hept{\begin{cases}x+1=0\\x+y=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\x=-y\end{cases}}\Rightarrow x=-y=-1\)
\(x+y=2\Rightarrow y=2-x\)
\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)
\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)
\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)
Dấu "=" xảy ra khi \(x=y=1\)
\(B=\left(x^2+2xy+y^2\right)+\left(x^2-4x+4\right)+2016\)
\(B=\left(x+y\right)^2+\left(y-2\right)^2+2016\)
Vậy Min B =2016 <=> x=-2;y=2