K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2016

giúp với mình sắp nạp rồi

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

13 tháng 12 2019

Câu hỏi của tam phung - Toán lớp 7 - Học toán với OnlineMath

29 tháng 8 2020

Ta có:

\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|\)

\(B=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+...+\left(\left|x-50\right|+\left|51-x\right|\right)\)

\(\ge\left|x-1+100-x\right|+\left|x-2+99-x\right|+...+\left|x-50+51-x\right|\)

\(=99+97+...+1=2500\)

Dấu "=" xảy ra khi: \(x=\frac{101}{2}\)

24 tháng 2 2018

Ta có : 

\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\)  và có GTNN

\(\Rightarrow\)\(x=1\)

\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)

Vậy \(M_{min}=-3\) khi \(x=1\)

12 tháng 3 2020

\(M=\left|x-3\right|+\left|x-5\right|+x^2-8x+2019\)

\(=\left|x-3\right|+\left|5-x\right|+x^2-8x+16+2013\)

\(=\left|x-3\right|+\left|5-x\right|+\left(x-4\right)^2+2013\)

Ta thấy \(\left|x-3\right|+\left|5-x\right|\ge\left|x-3+5-x\right|\ge2\)

\(\left(x-4\right)^2\ge0\)

\(\Rightarrow M=\left|x-3\right|+\left|5-x\right|+\left(x-4\right)^2+2013\ge2+0+2013=2015\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-3\right|+\left|5-x\right|=2\\\left(x-4\right)^2=0\end{cases}\Leftrightarrow}x=4\)

12 tháng 3 2020

hicc mình trừ nhầm :">

Dòng 2 trở đi là + 2003 nhá

 GTNN = 2005

T^T

AH
Akai Haruma
Giáo viên
4 tháng 1 2023

Lời giải:

Ta thấy: $x^2\geq 0$ với mọi $x$ nên $x^2+9+2019\geq 9+2019=2028$

$\Rightarrow A=\sqrt{x^2+9+2019}\geq \sqrt{2028}$

Vậy GTNN của $A$ là $\sqrt{2028}$ khi $x=0$

2 tháng 10 2016

a)

  • Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-1\right|+\left|x-4\right|\ge\left|x-1+4-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-1\right)\left(x-4\right)\ge0\)\(\Rightarrow1\le x\le4\)

Vậy MinB=3 khi \(1\le x\le4\)

  • Áp dụng tiếp Bđt kia ta có:

\(\left|1993-x\right|+\left|1994-x\right|\ge\left|1993-x+x-1994\right|=1\)

\(\Rightarrow C\ge1\)

Dấu = khi \(\left(x-1993\right)\left(x-1994\right)\ge0\)\(\Rightarrow1993\le x\le1994\)

Vậy MinC=1 khi \(1993\le x\le1994\)

  • Ta thấy: \(\begin{cases}x^2\\\left|y-2\right|\end{cases}\ge0\)

\(\Rightarrow x^2+\left|y-2\right|\ge0\)

\(\Rightarrow x^2+\left|y-2\right|-5\ge-5\)

\(\Rightarrow D\ge-5\)

Dấu = khi \(\begin{cases}x=0\\y=2\end{cases}\)

Vậy MinD=-5 khi \(\begin{cases}x=0\\y=2\end{cases}\)

b)Ta thấy:

\(\begin{cases}\left|4x-3\right|\\\left| 5y+7,5\right|\end{cases}\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow C\ge17,5\)

Dấu = khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

Vậy MinC=17,5 khi \(\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}\)

c)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2002\right|+\left|x-2001\right|\ge\left|x-2002+2001-x\right|=1\)

\(\Rightarrow M\ge1\)

Dấu = khi \(\left(x-2002\right)\left(x-2001\right)\ge0\)\(\Rightarrow2001\le x\le2002\)

Vậy MinM=1 khi \(2001\le x\le2002\)

3 tháng 10 2016

Thankshaha