K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
16 tháng 4 2019

\(H=2019-\left(\left|x-y\right|^{2018}+\left|2x+1\right|+\left|4x+2\right|\right)\)

+ \(\left\{{}\begin{matrix}\left|x-y\right|^{2018}\ge0\forall x,y\\\left|2x+1\right|\ge0\forall x\\\left|4x+2\right|\ge0\forall x\end{matrix}\right.\)

\(\Rightarrow\left|x-y\right|^{2018}+\left|2x+1\right|+\left|4x+2\right|\ge0\forall x,y\)

\(\Rightarrow H\le2019\forall x,y\)

+ H = 2019 \(\Leftrightarrow\left\{{}\begin{matrix}\left|x-y\right|^{2018}=0\\\left|2x+1\right|=0\\\left|4x+2\right|=0\end{matrix}\right.\Leftrightarrow x=y=-\frac{1}{2}\)

Vậy Min H = 2019 \(\Leftrightarrow x=y=-\frac{1}{2}\)

16 tháng 4 2019

Làm sao để được \(|x-y|^{2018}=0\) và 2 phép còn lại =0 vậy ạ? Mong bạn giải thích rõ giúp mình được không?Y

10 tháng 2 2019

Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình

5 tháng 9 2018

b, tìm x,y biết |x-2018|+|y+2019|=0

\(\Rightarrow\hept{\begin{cases}|x-2018|=0\\|y+2019|=0\end{cases}}\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}\)

vậy x=2018 ; y=-2019

5 tháng 9 2018

a) 

ta có \(\hept{\begin{cases}\left|x\right|\ge0\\\left|y+1\right|\ge0\end{cases}}\Rightarrow\left|x\right|+\left|y+1\right|\ge0\Rightarrow A_{min}=0\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

b)

ta có \(\hept{\begin{cases}\left|x-2018\right|\ge0\\\left|y+2019\right|\ge0\end{cases}}\)

mà \(\left|x-2018\right|+\left|y+2019\right|=0\Rightarrow\hept{\begin{cases}x-2018=0\\y+2019=0\end{cases}\Rightarrow\hept{\begin{cases}x=2018\\y=-2019\end{cases}}}\)

26 tháng 9 2018

có |của một số|>0

==>giá trị nhỏ nhất của F =1

=> x=2018

26 tháng 9 2018

\(F=\left|2018-x\right|+\left|2019-x\right|\)

     \(=\left|2018-x\right|+\left|x-2019\right|\)

Ta có :

\(\left|2018-x\right|+\left|x-2019\right|\ge\left|2018-x+x-2019\right|\)

=> \(F\ge\left|-1\right|\)

=> \(F\ge1\)

Dấu = xảy ra khi : ( 2018 - x ) ( x - 2019 ) > 0

TH1 : \(\hept{\begin{cases}2018-x>0\\x-2019>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 2018\\x>2019\end{cases}}\)

=> 2019 < x < 2018 ( vô lí - loại )

TH2 : \(\hept{\begin{cases}2018-x< 0\\x-2019< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>2018\\x< 2019\end{cases}}\)

=> 2018 < x < 2019

Vậy giá trị nhỏ nhất của F là 1 khi x thỏa mãn 2018 < x < 2019

16 tháng 3 2020

\(A=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta thấy \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

\(\Rightarrow A\ge17,5\)

Dấu "=" xảy ra  \(\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

...
\(B=\left|x-2\right|+\left|x-6\right|+2017\)

\(=\left|x-2\right|+\left|6-x\right|+2017\)

Ta thấy \(\left|x-2\right|+\left|6-x\right|\ge\left|x-2+6-x\right|=4\)

\(\Rightarrow B\ge4+2017=2021\)

Dấu "=" xảy ra khi \(2\le x\le6\)

....

\(C=\left(2x+1\right)^{2020}-2019\)

Ta thấy \(\left(2x+1\right)^{2020}\ge0\)

\(\Rightarrow C=\left(2x+1\right)^{2020}-2019\ge-2019\)

Dấu "=" xảy ra khi \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)

....