K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2016

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A=\left|x-2009\right|+\left|x-1\right|=\left|x-2009\right|+\left|1-x\right|\)

\(\ge\left|x-2009+1-x\right|=2008\)

Dấu "=" khi \(1\le x\le2009\)

Vậy \(Min_A=2008\) khi \(1\le x\le2009\)

10 tháng 12 2016

BĐT là j ạ

24 tháng 1 2017

gtnn=1 nhe ban

19 tháng 1 2020

a) Ta có: A = |x + 1| + |x - 2009|

=> A = |x + 1| + |2009 - x| \(\ge\)|x + 1 + 2009 - x| = |2010| = 2010

Dấu "=" xảy ra <=> (x + 1)(2009 - x) \(\ge\)0

<=> \(-1\le x\le2009\)

Vậy MinA = 2010 khi \(-1\le x\le2009\)

b) Ta có: 2n - 1 = 2(n - 4) + 7

Do 2(n - 4) \(⋮\)n - 4 => 7 \(⋮\)n - 4

=> n - 4 \(\in\)Ư(7) = {1; -1; 7; -7}

Lập bảng:

 n - 4 1 -1 7 -7
   n 5 3 11 -3

Vậy ....

19 tháng 1 2020

a) Ta có A  = |x + 1| + |x - 2009|

              = |x + 1| + |2009 - x| \(\ge\left|x+1+2009-x\right|=2010\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1\ge0\\2009-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le2009\end{cases}\Rightarrow1\le x\le2009}\)

b) Để 2n - 1 \(⋮\)n - 4

=> 2n - 8 + 7  \(⋮\)n - 4

=> 2(n - 4) + 7  \(⋮\)n - 4

Vì 2(n - 4)  \(⋮\)n - 4

=> 7  \(⋮\)n - 4

=> \(n-4\inƯ\left(7\right)\Rightarrow n-4\in\left\{\pm1;\pm7\right\}\)

Lập bảng xét các trường hợp : 

n - 41-17-7
n5311-3

Vậy \(n\in\left\{-3;3;5;11\right\}\)

6 tháng 11 2016

dễ ợt 2008

1 tháng 4 2018

giải đi chứ

31 tháng 10 2021

Ai lm đc câu nào thì giúp mk với , cảm ơn !!

31 tháng 10 2021

\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)

4 tháng 10 2015

câu 1:0

Câu 2: -4

26 tháng 12 2022

đợi tý

26 tháng 12 2022

Đã trả lời rồi còn độ tí đồ ngull