Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi Bmin là GTNN của B
Ta có \(\left|3x-6\right|\ge0\)=> \(2\left|3x-6\right|\ge0\)với mọi \(x\in R\)
=> \(2\left|3x-6\right|-4\ge0\)với mọi \(x\in R\).
=> Bmin = 0.
Vậy GTNN của B = 0.
2/ Gọi Dmin là GTNN của D.
Ta có \(\left|x-2\right|\ge0\)với mọi \(x\in R\)
và \(\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> \(\left|x-2\right|+\left|x-8\right|\ge0\)với mọi \(x\in R\)
=> Dmin = 0.
=> \(\left|x-2\right|+\left|x-8\right|=0\)
=> \(\hept{\begin{cases}\left|x-2\right|=0\\\left|x-8\right|=0\end{cases}}\)=> \(\hept{\begin{cases}x-2=0\\x-8=0\end{cases}}\)=> \(\hept{\begin{cases}x=2\\x=8\end{cases}}\)(Vô lý! Không thể cùng lúc có 2 giá trị x xảy ra)
Vậy không có x thoả mãn đk khi GTNN của D = 3.
Ta có:|x-2017|>hoặc=0,
Để A có giá trị nhỏ nhất,=>|x-2017|=0
=>x=2017
Vậy A có giá trị nhất=-1 với x=2017
thay x vào sẽ rõ thôi
kết bạn với nha
Ta thấy:\(\left|x-1\right|+\left|x-2017\right|\ge\left|x-1+2017-x\right|\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2017\right|\ge2016\)
\(\Leftrightarrow A\ge2016\)
Dấu "="xảy ra khi x=1 hoặc 2017
Vậy Amin=2016 <=>x=1 hoặc 2017
Ta có: \(A=|x-2017|+x-2018\)
\(\Rightarrow A=|2017-x|+x-2018\)
\(\Rightarrow A\ge2017-x+x-2018=-1\)
Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)
Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)
=> A\(\ge x-2018\forall x\)
Dấu " = " xảy ra khi \(|x-2017|\)=0
=> x= 2017
1) \(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
\(A\)nhỏ nhất nên \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất nên \(\left|x-2016\right|+2018\)dương nhỏ nhất.
mà \(\left|x-2016\right|+2018\ge2018\)
Dấu \(=\)khi \(x=2016\).
Vậy \(minA=1-\frac{1}{2018}=\frac{2017}{2018}\)đạt tại \(x=2016\).
2) \(x-2xy+y=0\)
\(\Leftrightarrow x\left(1-2y\right)+\frac{1}{2}-y-\frac{1}{2}=0\)
\(\Leftrightarrow\left(2x+1\right)\left(1-2y\right)=1=1.1=\left(-1\right).\left(-1\right)\)
Từ đây xét 2 trường hợp nha. Ra kết quả cuối cùng là: \(\left(x,y\right)\in\left\{\left(0,0\right),\left(1,1\right)\right\}\).
Để M nhỏ nhất
=> (x-1)^2 = 0 ( do (x-1)^2 lớn hơn or = 0)
=> x = 1
Lại => |y+3x| = 0 ( giá trị tuyệt đối cx luôn lớn hơn or = 0)
|y+3.1| = 0
=> y = - 3
=> Min M = 2017 tại x = 1; y = -3
Ta có :
\(\left|x-1\right|+\left|x-2017\right|\ge x-1+2017-x=2016\)
\(\left|x-2\right|+\left|x-2016\right|\ge x-2+2016-x=2014\)
....
\(\left|x-1008\right|+\left|x-1010\right|\ge x-1008+1010-x=2\)
\(\left|x-1009\right|\ge0\)
\(\Rightarrow P\ge2016+2014+....+2+0\)
\(\Rightarrow P\ge1017072\)
Dấu " = " xảy ra khi \(\begin{cases}\begin{cases}x-1>0\\2017-x>0\end{cases}\\.....\\x-1009=0\end{cases}\)
=> x = 1009
Vậy ......