K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
5 tháng 12 2021

\(9x^2+5y^2-6xy-6x-6y+20\)

\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)

\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)

Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:
$A=(9x^2-6xy+y^2)+5y^2-6x-6y+20$

$=(3x-y)^2-2(3x-y)+4y^2-8y+20$

$=(3x-y)^2-2(3x-y)+1+(4y^2-8y+4)+15$

$=(3x-y-1)^2+(2y-2)^2+15\geq 15$

Vậy $A_{\min}=15$.

Giá trị này đạt tại $3x-y-1=2y-2=0$

$\Leftrightarrow (x,y)=(\frac{2}{3},1)$

23 tháng 6 2017

A=9x^2+18xy-12x+13y^2-24y+5

\(=\left(3x\right)^2+2.3.3xy-2.3x.2+9y^2+4y^2-12y-12y+4+9-8\)

\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2+2.3x.3y+2.3x.2+2.3y.2\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)

\(=\left(3x+3y+2\right)^2+\left(2y-3\right)^2-8\ge-8\)

Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}\left(3x+3y+2\right)^2=0\\\left(2y-3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+3y+2=0\\2y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6,5\\y=1,5\end{cases}}}\)

20 tháng 6 2017

\(\text{A=9x^2+18xy-12x+13y^2-24y+5}\)

\(=\left[\left(3x\right)^2+\left(3y\right)^2+2^2-12x+18xy-12y\right]+\left[\left(2y\right)^2-2.2y.3+9\right]-8\)

\(=\left(3x+3y-2\right)^2+\left(2y-3\right)^2-8\ge-8\)

Vậy \(MinA=-8\Leftrightarrow\hept{\begin{cases}3x+3y-2=0\\2y-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1,5\\y=1,5\end{cases}}}\)

5 tháng 2 2017

\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right)\\ \)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+4\)\(\ge4\)

Amin=4 khi y=1; x=7

22 tháng 10 2019

\(A=\left(x-y-6\right)^2+6y^2+2y+45-\left(y^2+12y+36\right) \)

\(A=\left(x-7-6\right)^2+5\left(y-1^2\right)+4\ge4\)

\(Amin=4\)\(khi\)\(y=1;x=7\)

19 tháng 7 2021

\(a,x^2+12x+39=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\forall x\)

Dấu = xảy ra \(\Leftrightarrow x+6=0\) 

\(\Leftrightarrow x=-6\)

Vậy ...

\(b,9x^2-12x=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)

Dấu = xảy ra \(\Leftrightarrow3x-2=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

Vậy ...

19 tháng 7 2021

Trả lời:

a, \(x^2+12x+39=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\forall x\)

Dấu "=" xảy ra khi x + 6 = 0 <=> x = - 6

Vậy GTNN của biểu thức bằng 3 khi x = - 6

b, \(9x^2-12x=\left(3x\right)^2-2.3x.2+4-4=\left(3x-2\right)^2-4\ge-4\forall x\)

Dấu "=" xảy ra khi 3x - 2 = 0 <=> x = 2/3

Vậy GTNN của biểu thức bằng - 4 khi x = 2/3