Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a/\(A=5-I2x-1I\)
Ta thấy: \(I2x-1I\ge0,\forall x\)
nên\(5-I2x-1I\le5\)
\(A=5\)
\(\Leftrightarrow5-I2x-1I=5\)
\(\Leftrightarrow I2x-1I=0\)
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)
b/\(B=\frac{1}{Ix-2I+3}\)
Ta thấy : \(Ix-2I\ge0,\forall x\)
nên \(Ix-2I+3\ge3,\forall x\)
\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)
\(B=\frac{1}{3}\)
\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)
\(\Leftrightarrow Ix-2I+3=3\)
\(\Leftrightarrow Ix-2I=0\)
\(\Leftrightarrow x=2\)
Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)
\(D=|x-1|+|x-4|=|x-1|+|4-x|\ge|x-1+4-x|=3\)
\(B=|1993-x|+|1994-x|=|1993-x|+|x-1994|\ge|1993-x+x-1994|=1\)
\(C=x^2+|y-2|-5\ge-5\)
Để D nhỏ nhất => I x-1I bé nhất hoặc I x-4I bé nhất => x-1 =0 hoặc x-4=0
=> x= 1 hoặc x=4
Vậy GTNN của D là: I 1-4I = 3 tại x= 1 hoặc x=4
B tương tự
Để C nhỏ nhất => x^2 bé nhất và I y - 2I bé nhất => x^2 = 0 và y-2 = 0
x= 0 và y=2
VaayjGTNN của C là -5 tại x=0 và y=2
\(A=\left|x+\frac{1}{2}\right|-1\)
ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)
\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)
\(\Rightarrow A\ge-1\)
\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy GTNN của A=-1 tại x=-1/2
\(A=\left|\dfrac{3}{5}-x\right|+\dfrac{1}{9}\ge\dfrac{1}{9}\\ A_{min}=\dfrac{1}{9}\Leftrightarrow x=\dfrac{3}{5}\\ B=\dfrac{2009}{2008}-\left|x-\dfrac{3}{5}\right|\le\dfrac{2009}{2008}\\ B_{max}=\dfrac{2009}{2008}\Leftrightarrow x=\dfrac{3}{5}\\ C=-2\left|\dfrac{1}{3}x+4\right|+1\dfrac{2}{3}\le1\dfrac{2}{3}\\ C_{max}=1\dfrac{2}{3}\Leftrightarrow\dfrac{1}{3}x=-4\Leftrightarrow x=-12\)
Với \(a< b< c< d\) thì
\(A=\left|x-a\right|+\left|x-b\right|+\left|x-c\right|+\left|x-d\right|< \left|x-a\right|+\left|x-a\right|+\left|x-a\right|+\left|x-a\right|=4\left|x-a\right|\)