K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2017

\(A=\left|x-2011\right|+\left|x-2\right|\)

\(\Rightarrow\left|x-2\right|\ge0\)

\(\Rightarrow Min_A=0\)khi \(x=2011\)hoặc 2

5 tháng 12 2016

a)\(A=\left|x-2012\right|+\left|2011-x\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2012\right|+\left|2011-x\right|\ge\left|x-2012+2011-x\right|=1\)

Dấu "=" khi \(2011\le x\le2012\)

Vậy \(Min_A=1\) khi \(2011\le x\le2012\)

24 tháng 8 2016

=> /x-2011/\(\ge0\)

/x-2/\(\ge0\)

=> min A=0 khi x=2011 hoặc 2

tíc mình nha

3 tháng 12 2016
x 22011 
!x-2011!2011-x20090x-2011
!x-2!2-x02009x-2
A2011-x+2-x20092009x-2011+x-2
A2013-2x200920092x-2013
     

A(min)=2009 khi \(2\le x\le2011\)

3 tháng 10 2021

ta thấy: \(\left|x-2010\right|\ge0\)\(\left(y+2011\right)^{2020}\ge0\)

\(\Rightarrow\left|x-2010\right|+\left(y+2011\right)^{2020}+2011\ge2011\)

dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2010=0\\y+2011=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

vậy MinA=2011 khi\(\left\{{}\begin{matrix}x=2010\\y=-2011\end{matrix}\right.\)

\(A=\left|x-2011\right|+\left|x-200\right|\)

\(=\left|2011-x\right|+\left|x-200\right|\ge\left|2011-x+x-200\right|=1811\)

Vậy \(MinA=1811\Leftrightarrow\left(2011-x\right)\left(x-200\right)\ge0\Leftrightarrow200\le x\le2011\)

5 tháng 11 2016

A = / x - 2011 / + / x - 1 /

=> A = / x - 2011 / + / 1 - x /

Áp dụng công thức / a / + / b / > hoặc = / a + b /

=> A = / x - 2011 / + / 1 - x / > hoặc = / x - 2011 + 1 - x /

=> A = / x - 2011 / + / 1 - x / > hoặc = / -2010 /

=> A = / x - 2011 / + / 1 - x / > hoặc = 2010

Dấu bằng xảy ra khi ( x - 2011 ).( 1 - x ) > hoặc = 0

=>( x - 2011 ).( x - 1 ) < hoặc = 0

Do x - 2011 < x - 1

=> x - 2011 < hoặc = 0    ;     x - 1  > hoặc = 0

=> x < hoặc = 2011   ;   x > hoặc = 1

=> 1 < hoặc = x < hoặc = 2011

3 tháng 2 2017

vì A =/x-2011/+/x-1/ mà A nhỏ nhất nên =>/x-2011/+/x-1/ cũng nhỏ nhất

vì /x-2011/ và /x-1/ luôn luôn là số tự nhiên

mà /x-2011/ và /x-1/ nhỏ nhất nên => /x-2011/ và /x-1/ =0

0+0=0

=>A =0

30 tháng 11 2015

ta có

A=/x-2011/ + /x-1/=/x-2011/+/1-x/

áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>A =/x-2011/+/1-x/\(\ge\)   /x-2011+1-x/=2010

30 tháng 4 2016

ta thay M=(2011-x-1)/(2011-x)                  =1-1/(2011-x)                                         de M nho nhat thi 1/(2011-x) lon nhat suyra 2011-x nho nhat   va nguyen duong suy ra x=2010      suy ra gia tri nho nhat cua M=0