K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2022

a: (2x-3y)(3x-2)=7

mà x,y là các số nguyên

nên \(\left(3x-2;2x-3y\right)\in\left\{\left(1;7\right)\right\}\)

=>x=1 và 2x-3y=7

=>x=1 và 3y=-5

=>\(\left(x,y\right)\in\varnothing\)

b: (2x-3)(9x+y)=11

mà x,y là các số nguyên

nên \(\left(2x-3;9x+y\right)\in\left\{\left(1;11\right);\left(11;1\right);\left(-1;-11\right);\left(-11;-1\right)\right\}\)

=>\(\left(x,9x+y\right)\in\left\{\left(2;11\right);\left(7;1\right);\left(1;-11\right);\left(-4;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(2;-7\right);\left(7;-62\right);\left(1;-20\right);\left(-4;-35\right)\right\}\)

26 tháng 1 2018

a, Vì |2x+8| và |3y-9x| đều >= 0

=> |2x+8| + |3y-9x| >= 0

Dấu "=" xảy ra <=> 2x+8=0 và 3y-9x=0 <=> x=-4 và y=-12

Vậy x=-4 và y=-12

Tk mk nha

26 tháng 1 2018
thank bn nha
26 tháng 12 2022

a, 3x ( y+1) + y + 1 = 7

(y+1)(3x +1) =7

th1 : \(\left\{{}\begin{matrix}y+1=1\\3x+1=7\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y+1=-1\\3x+1=-7\end{matrix}\right.\)=> x = -8/3 (loại)

th3: \(\left\{{}\begin{matrix}y+1=7\\3x+1=1\end{matrix}\right.\)=> \(\left\{{}\begin{matrix}y=6\\x=0\end{matrix}\right.\)

th 4 : \(\left\{{}\begin{matrix}y+1=-7\\3x+1=-1\end{matrix}\right.\)=> x=-2/3 (loại)

Vậy (x,y)= (2 ;0);  (0; 6)

b, xy - x + 3y - 3 = 5

   (x( y-1) + 3( y-1) = 5

          (y-1)(x+3) = 5

 th1: \(\left\{{}\begin{matrix}y-1=1\\x+3=5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=2\\x=8\end{matrix}\right.\)

th2: \(\left\{{}\begin{matrix}y-1=-1\\x+3=-5\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=0\\x=-8\end{matrix}\right.\)

th3: \(\left\{{}\begin{matrix}y-1=5\\x+3=1\end{matrix}\right.\) => \(\left\{{}\begin{matrix}y=6\\x=-2\end{matrix}\right.\)

th4: \(\left\{{}\begin{matrix}y-1=-5\\x+3=-1\end{matrix}\right.\) =>  \(\left\{{}\begin{matrix}y=-4\\x=-4\end{matrix}\right.\)

vậy (x, y) = ( 8; 2); ( -8; 0);  (-2; 6); (-4; -4)

c, 2xy + x + y = 7 => y = \(\dfrac{7-x}{2x+1}\) ; y ϵ Z ⇔ 7-x ⋮ 2x+1

⇔ 14 - 2x ⋮ 2x + 1 ⇔ 15 - 2x - 1  ⋮ 2x + 1

th1 : 2x + 1 = -1=> x = -1; y = \(\dfrac{7-(-1)}{-1.2+1}\) = -8

th2: 2x+ 1 = 1=> x =0; y = 7

th3: 2x+1 = -3 => x =  x=-2  => y = \(\dfrac{7-(-2)}{-2.2+1}\) = -3 

th4: 2x+ 1 = 3 => x = 1 => y = \(\dfrac{7+1}{2.1+1}\) = 2

th5: 2x + 1 = -5 => x = -3=> y = \(\dfrac{7-(-3)}{-3.2+1}\) = -2

th6: 2x + 1 = 5 => x = 2; ; y = \(\dfrac{7-2}{2.2+1}\) =1

th7 : 2x + 1 = -15 => x = -8; y = \(\dfrac{7-(-8)}{-8.2+1}\) = -1

th8 : 2x+1 = 15 => x = 7; y = \(\dfrac{7-7}{2.7+1}\) = 0

kết luận

(x,y) = (-1; -8); (0 ;7); ( -2; -3) ; ( 1; 2); ( -3; -2); (2;1); (-8;-1);(7;0)

 

    

 

 

 

   

26 tháng 12 2022

 

3xy−2x+5y=293xy−2x+5y=29

9xy−6x+15y=879xy−6x+15y=87

(9xy−6x)+(15y−10)=77(9xy−6x)+(15y−10)=77

3x(3y−2)+5(3y−2)=773x(3y−2)+5(3y−2)=77

(3y−2)(3x+5)=77(3y−2)(3x+5)=77

⇒(3y−2)⇒(3y−2) và (3x+5)(3x+5) là Ư(77)=±1,±7,±11,±77Ư(77)=±1,±7,±11,±77

Ta có bảng giá trị sau:

Do x,y∈Zx,y∈Z nên (x,y)∈{(−4;−3),(−2;−25),(2;3),(24;1)}

 

a) \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}\)

Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=2\) ( vì 2x + 3y - z = 186 )

\(\Rightarrow\left\{{}\begin{matrix}2x=30.3=90\\3y=60.3=180\\z=28.3=84\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(45,60,84\right)\)

b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x+y+z=-90\)

Áp dụng dãy tỉ số bằng nhau ta được :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)

( do \(x+y+z=-90\) )

\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-9\right)=-18\\y=3.\left(-9\right)=-27\\z=5.\left(-9\right)=-45\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(-18,-27,-45\right)\)

23 tháng 4 2020

khoong biet

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Bạn chú ý gõ đề bài bằng công thức toán!

1 tháng 6 2021

Trả lời:

A = ( 2x - 7 )4

Ta có: \(\left(2x-7\right)^4\ge0\forall x\)

Dấu "=" xảy ra khi 2x - 7 = 0 <=> 2x = 7 <=> x = 7/2

Vậy GTNN của A = 0 khi x = 7/2

B = ( x + 1 )10  + ( y - 2 )20 + 7 

Ta có:  \(\left(x+1\right)^{10}\ge0\forall x;\left(y-2\right)^{20}\ge0\forall y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}\ge0\forall x;y\)

\(\Leftrightarrow\left(x+1\right)^{10}+\left(y-2\right)^{20}+7\ge7\forall x;y\)

Dấu "=" xảy ra khi x + 1 = 0 <=> x = -1  và y - 2 = 0 <=> y = 2

Vậy GTNN của B = 7 khi x = -1 và y = 2

C = ( 3x - 4 )100 + ( 5y + 1 )50 - 20

Ta có: \(\left(3x-4\right)^{100}\ge0\forall x;\left(5y+1\right)^{50}\ge0\forall y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}\ge0\forall x;y\)

\(\Leftrightarrow\left(3x-4\right)^{100}+\left(5y+1\right)^{50}-20\ge-20\forall x;y\)

Dấu "=" xảy ra khi 3x - 4 = 0 <=> x = 4/3 và 5y + 1 = 0 <=> y = -1/5

Vậy GTNN của C = -20 khi x = 4/3 và y = -1/5

D = ( 2x + 3 )20 + ( 3y - 4 )10 + 1000

Ta có: \(\left(2x+3\right)^{20}\ge0\forall x;\left(3y-4\right)^{10}\ge0\forall y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}\ge0\forall x;y\)

\(\Leftrightarrow\left(2x+3\right)^{20}+\left(3y-4\right)^{10}+100^0\ge1\forall x;y\)

Dấu "=" xảy ra khi 2x + 3 = 0 <=> x = -3/2 và 3y - 4 = 0 <=> y = 4/3

Vậy GTNN của D = 1 khi x = -3/2 và y = 4/3

E = ( x - y )50 + ( y - 2 )60 + 3

Ta có: \(\left(x-y\right)^{50}\ge0\forall x;y\)\(\left(y-2\right)^{60}\ge0\forall y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}\ge0\forall x;y\)

\(\Leftrightarrow\left(x-y\right)^{50}+\left(y-2\right)^{60}+3\ge3\forall x;y\)

Dấu "=" xảy ra khi x - y = 0 <=> x = y và y - 2 = 0 <=> y = 2

Vậy GTNN của E = 3 khi x = y = 2