K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2020

1) \(P=\frac{2}{6-m}\left(m\ne6\right)\)

Để P có GTLN thì 6-m đạt giá trị nhỏ nhất

=> 6-m=1

=> m=5 (tmđk)
Vậy m=5 thì P đạt giá trị lớn nhất

24 tháng 2 2018

Ta có : 

\(\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)

Để M có GTNN thì \(\frac{5}{x}\) phải có GTLN hay \(x>0\)  và có GTNN

\(\Rightarrow\)\(x=1\)

\(\Rightarrow\)\(M=\frac{2x-5}{x}=\frac{2.1-5}{1}=\frac{-3}{1}=-3\)

Vậy \(M_{min}=-3\) khi \(x=1\)

3 tháng 11 2018

Th1 : x >= 2013

Th2 : x<2013

4 tháng 11 2018

TuanMinhAms sai rồi bn

để  A lớn nhất \(\Rightarrow\left|x-2013\right|+2\) bé nhất

\(\left|x-2013\right|\ge0\Rightarrow\left|x-2013\right|+2\ge2\)

dấu "=" xảy ra khi \(\left|x-2013\right|=0\Rightarrow x=2013\)

khi đó GTLN của A = \(\frac{2026}{2}=1013\)

p/s: sai mk góp ý ko pk soi bài hay xúc phạm bn nha =]

4 tháng 2 2016

30

ủng hộ mk nha

4 tháng 2 2016

mình mới học lớp 6

31 tháng 10 2018

\(A=\frac{2026}{\left|x-2013\right|}+2\)

Để A nhỏ nhất thì \(\frac{2026}{\left|x-2013\right|}\)nhỏ nhất

\(\Rightarrow\left|x-2013\right|\)nhỏ nhất

Mà \(\left|x-2013\right|\ge0\forall x\)và \(\left|x-2013\right|\ne0\)

\(\Rightarrow\left|x-2013\right|=1\)thì A nhỏ nhất

Khi đó \(A=\frac{2026}{1}+2=2023+2=2028\)

Vậy Amax = 2028 <=> | x - 2013 | = 1 <=> x ∈ { 2014; 2012 }

19 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)

Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3x+2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau : 

\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)

Áp dụng vào ta có : 

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A=8\) khi \(0\le x\le8\)

Chúc bạn học tốt ~