Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A\in Z\Rightarrow5⋮\sqrt{x-3}\)
\(\Rightarrow\sqrt{x-3}\inƯ\left(5\right)=\left\{\pm5;\pm1\right\}\)
\(\Rightarrow x-3\in\left\{1;25\right\}\)
\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=25\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=28\end{cases}}}\)
Vậy \(x\in\left\{4;28\right\}\)
Ta có A=x - 3 - 5/x - 3
A=x - 3/x - 3 - 5/x - 3
A=1 - 5/x - 3
Đẻ A đạt giá trị nhỏ nhất<=>1 - 5/x - 3 cũng phải đạt giá trị nhỏ nhất
Mà 1>0=>để A đạt giá trị nhỏ nhất=>5/x - 3 phải lớn nhất nguyên dương
=>x - 3 phải là số bé nhất nguyên dương=1
Ta có:x - 3=1
x=1+3=4
A=2n-1/n-3
A=2(n-3)+5/n-3
A=2+(5/n-3)
để A nguyên
thì2+(5/n-3) nguyen
thì5/n-3 nguyên
9
(n-3)(U(5)=(-5 ; -1 ; 1 ; 5 )
n((-2;2;4;8)
muốn A=2n-1/n-3 có giá trị là số nguyên thì
2n-1 chia hết cho n-3
(2n-6)+5 chia hết cho n-3
(2n-2*3)+5 chia hết cho n-3
2(n-3)+5 chia hết cho n-3
- vì 2(n-3) chia hết cho n-3 suy ra 5 chia hết cho n-3
- suy ra n-3 thuộc Ư(5)
- mà Ư(5)={1,5,-1,-5}
- ta có
- n-3=1 suy ra n=4
- n-3=5 suy ra n=8
- n-3=-1 suy ra n=2
- n-3=-5 suy ra n=-2
- Ý bạn Là Vậy Hả
- .........
Để A không xác định được => x-2=0 => x=2
Để A âm => x-2 âm (vì x2+3 luôn dương) => x-2<0 => x<2
Để A nguyên => x2+3 chia hết cho x-2 => x.(x-2)+2.(x-2)+4+3 = (x-2).(x+2)+7 chia hết cho x-2 => 7 chia hết cho x-2
Lập Bảng
a) 5x.(x+3/4) = 0
=> x = 0
x+3/4 = 0 => x = -3/4
b) \(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}.\)
\(\Rightarrow\frac{x+7}{2010}+\frac{x+6}{2011}-\frac{x+5}{2012}-\frac{x+4}{2013}=0\)
\(\frac{x+7}{2010}+1+\frac{x+6}{2011}+1-\frac{x+5}{2012}-1-\frac{x+4}{2013}-1=0\)
\(\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)-\left(\frac{x+5}{2012}+1\right)-\left(\frac{x+4}{2013}+1\right)=0\)
\(\frac{x+2017}{2010}+\frac{x+2017}{2011}-\frac{x+2017}{2012}-\frac{x+2017}{2013}=0\)
\(\left(x+2017\right).\left(\frac{1}{2010}+\frac{1}{2011}-\frac{1}{2012}-\frac{1}{2013}\right)=0\)
=> x + 2017 = 0
x = -2017
a) để 2x - 3 > 0
=> 2x > 3
x > 3/2
b) 13-5x < 0
=> 5x < 13
x < 13/5
c) \(\frac{x+3}{2x-1}>0\)
=> x + 3 > 0
x > -3
d) \(\frac{x+7}{x+3}=\frac{x+3+4}{x+3}=1+\frac{4}{x+3}\)
Để x+7/x+3 < 1
=> 1 + 4/x+3 < 1
=> 4/x+3 < 0
=> không tìm được x thỏa mãn điều kiện
Để A có giá trị nguyên thì x-5\(⋮\)x-3
<=> (x-3)-2\(⋮\)x-3
<=> -2\(⋮\)x-3
=> x-3\(\in\){1,-1,2,-2}
<=> x\(\in\){4,2,5,1}