Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để A là phân số thì n-2<>0
=>n<>2
Khi n=-2 thì \(A=\dfrac{2\cdot\left(-2\right)+1}{-2-2}=\dfrac{-3}{-4}=\dfrac{3}{4}\)
b: Để A nguyên thì 2n+1 chia hết cho n-2
=>2n-4+5 chia hết cho n-2
=>\(n-2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{3;1;7;-3\right\}\)
b.\(B=\dfrac{2n+5}{n+3}\)
\(B=\dfrac{n+n+3+3-1}{n+3}=\dfrac{n+3}{n+3}+\dfrac{n+3}{n+3}-\dfrac{1}{n+3}\)
\(B=1+1-\dfrac{1}{n+3}\)
Để B nguyên thì \(\dfrac{1}{n+3}\in Z\) hay \(n+3\in U\left(1\right)=\left\{\pm1\right\}\)
*n+3=1 => n=-2
*n+3=-1 => n= -4
Vậy \(n=\left\{-2;-4\right\}\) thì B có giá trị nguyên
Ta có: A = \(\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)
Để A \(\in\)Z <=> 8 \(⋮\)n - 3 <=> n - 3 \(\in\)Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
n - 3 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 4 | 2 | 5 | 1 | 7 | -1 | 11 | -5 |
Vậy ...
B = \(\frac{12n-5}{2n-1}=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)
Để B \(\in\)Z <=> 1 \(⋮\)2n - 1 <=> 2n - 1 \(\in\)Ư(1) = {1; -1}
+) 2n - 1 = 1 => 2n = 1 + 1 = 2 => n = 2 : 2 = 1
2n - 1 = -1 => 2n = -1 + 1 = 0 => n = 0 : 2 = 0
Vậy ...
\(A=\frac{5n-7}{n-3}\)Điều kiện : \(n\ne3\)
\(A=\frac{5n-7}{n-3}=\frac{5\left(n-3\right)+8}{n-3}=5+\frac{8}{n-3}\)
Để \(A\in Z\Rightarrow\frac{8}{n-3}\in Z\Rightarrow n-3\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
\(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)
Vậy \(\Rightarrow n\in\left\{-5;-1;1;2;4;5;7;11\right\}\)thì \(A\in Z\)
\(B=\frac{12n-5}{2n-1}\) Điều kiện : \(n\ne\frac{1}{2}\)
\(=\frac{6\left(2n-1\right)+1}{2n-1}=6+\frac{1}{2n-1}\)
Để \(B\in Z\Rightarrow\frac{1}{2n-1}\in Z\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
Vậy \(\Rightarrow n\in\left\{0;1\right\}\)thì \(B\in Z\)
A) Để A là phân số thì \(n+1\ne0\Leftrightarrow n\ne-1\)
b)\(\frac{5n+1}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5+\frac{-4}{n+1}\)
Để \(A\in Z\Rightarrow5+\frac{-4}{n+1}\in Z\)
\(\Rightarrow\frac{-4}{n+1}\in Z\)
\(\Rightarrow n+1\in U\left(-4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow x\in\left\{0;-2;1;-3;3;-5\right\}\)
Bài 2:
a) Để B là phân số thì n -3 \(\ne\)0 => n\(\ne\)3
b) Để B có giá trị là số nguyên thì n+4 \(⋮\)n-3
\(\frac{n+4}{n-3}\)= \(\frac{n-3+7}{n-3}\)= \(\frac{7}{n-3}\)Vì n+4 \(⋮\)n-3 nên 7 \(⋮\)n-3
=> n-3 \(\in\)Ư(7) ={ 1;7; -1; -7}
=> n\(\in\){ 4; 10; 2; -4}
Vậy...
c) Bn thay vào r tính ra
A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)
Vì\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)
+)\(n-3=1\Leftrightarrow n=4\)(TM đk)
+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)
+)\(n-3=11\Leftrightarrow n=14\)(TMđk)
+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)
Vậy x={4;2;14;-8} thì A\(\in\)Z
ĐK: \(n\ne3\)
\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)
Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)
Để A nhận giá trị nguyên thì
\(\Leftrightarrow\)7 chia hết cho n-1
\(\Rightarrow n-1\inƯ\left(7\right)\)={-1;-7;1;7}
Ta có bảng giá trị