K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

Xét phương trình hoành độ giao điểm 2 đường thẳng trên ta có:

$2x-m-3=m-4$

$⇒x=\dfrac{2m-1}{2}$

Nên điểm đó có tọa độ $M(\dfrac{2m-1}{2};m-4)$ 

suy ra điểm đó nằm trong góc phần tư thứ (VI) của mặt phẳng

\(\left\{{}\begin{matrix}\dfrac{2m-1}{2}>0\\m-4< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{1}{2}\\m< 4\end{matrix}\right.\)

Mà $m∈Z$ nên \(m\in\left\{1;2;3\right\}\)

$m=1⇒M(\dfrac{1}{2};-3)$

$m=2⇒M(\dfrac{3}{2};-2)$

$m=3⇒M(\dfrac{5}{2};-1)$

Vậy \(m\in\left\{1;2;3\right\}\)thỏa mãn đề

 

17 tháng 5 2021

đơn giản vl

9 tháng 1 2022

undefinedhelp me pls

1: Để hai đường song song thì m+3=2

hay m=-1

3: Tọa độ của điểm A là:

\(\left\{{}\begin{matrix}y_A=0\\2x+4=0\end{matrix}\right.\Leftrightarrow A\left(-2;0\right)\)

Tọa độ điểm B là:

\(\left\{{}\begin{matrix}y_B=0\\-x+4=0\end{matrix}\right.\Leftrightarrow B\left(4;0\right)\)

7 tháng 1 2021

a) y = 2x - 3

Cho x = 0 \(\Rightarrow\) y = -3 \(\Rightarrow\) A(0; -3)

Cho y = 0 \(\Rightarrow\) \(x=\dfrac{3}{2}\) \(\Rightarrow\) B\(\left(\dfrac{3}{2};0\right)\)

undefined

b) ĐKXĐ của (d'): \(m^2-2\ne0\)

\(\Leftrightarrow m\ne\sqrt{2}\)\(m\ne-\sqrt{2}\)

Để (d) // (d') thì

\(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\\m\ne-2\end{matrix}\right.\)

\(\Leftrightarrow m=2\) (nhận)

Vậy m = 2 thì (d) // (d')

3 tháng 4 2020

a) \(\hept{\begin{cases}2.\left(m-1\right).x-2.m.y=6m-2\\2.\left(m-1\right).x-\left(m-1\right).y=\left(m-1\right).\left(m+5\right)\end{cases}}\)

=> -2.m.y + ( m-1 ) .y = 6m - 2- ( m2 - m + 5.m -5 ) 

=> ( -m - 1 ) . y = -m2 + m + 2 

hay y = \(\frac{m^2-m-2}{m+1}=\frac{\left(m+1\right).\left(m-2\right)}{\left(m+1\right)}\)

         = m - 2 

Với m \(\ne\)-1 => y = m- 2 

Khi đó x = \(\frac{m+5+y}{2}=\frac{m+5+m-2}{2}=\frac{2m+3}{2}\)

b) \(\hept{\begin{cases}y=\left(m+5\right)+2.x\\m.y=\left(3.m-1\right)-\left(m-1\right).x\end{cases}}\)hay \(\hept{\begin{cases}y=2.x-\left(m+5\right)\\y=\frac{-\left(m-1\right).x+\left(3m-1\right)}{m}\end{cases}}\)

Vậy để hai đường thẳng của hệ cắt nhau cho giá trị nằm ở góc phần tư thứ IV của Oxy => \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< \frac{m+5}{2}\\x>\frac{3m-1}{m-1}\end{cases}\Rightarrow\hept{\begin{cases}m>3\\m< 6\end{cases}\Rightarrow}\hept{\begin{cases}m=4\\m=5\end{cases}}}\)( Mình cũng không chắc phần này ở đoạn đầu tiên nha )