K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2020

g) G =  x2 + 6x + 4y2 - 10y + 5

G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25

G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25

19 tháng 8 2020

h) H = -2x2 - 6x - 3y2 + 12y - 8

H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5 

H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)

vậy MaxH = 8,5 khi  x = -1,5 và y = 2

g) Ta có: \(G=x^2+6x+4y^2-10y+5\)

\(=x^2+6x+9+\left(2y\right)^2-2\cdot2y\cdot\frac{5}{2}+\frac{25}{4}-\frac{41}{4}\)

\(=\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\)

Ta có: \(\left(x+3\right)^2\ge0\forall x\)

\(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)

Do đó: \(\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}x+3=0\\2y-\frac{5}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\2y=\frac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\frac{5}{2}:2=\frac{5}{4}\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(G=x^2+6x+4y^2-10y+5\)\(-\frac{41}{4}\) khi x=-3 và \(y=\frac{5}{4}\)

NV
20 tháng 8 2020

\(H=-2\left(x^2+3x+\frac{9}{4}\right)-3\left(y^2-4y+4\right)+\frac{17}{2}\)

\(H=-2\left(x+\frac{3}{2}\right)^2-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)

\(H_{max}=\frac{17}{2}\) khi \(\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=2\end{matrix}\right.\)

22 tháng 8 2020

a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)

Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)

Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)

Vậy Amin = 8 - 11 = - 3 <=> x = 0

b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)

Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)

mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\)  <=> x = 1

19 tháng 8 2020

\(I=\frac{6}{x^2-6x+30}\\ I=\frac{6}{x^2-6x+36-6}\\ I=\frac{6}{\left(x-6\right)^2-6}\)

\(\left(x-6\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-6\right)^2-6\ge-6\forall x\\ \Rightarrow I=\frac{6}{\left(x-6\right)^2-6}\le\frac{6}{-6}=-1\forall x\)

Vậy \(max_I=-1\)

\("="\Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x-6=0\\ \Leftrightarrow x=6\)

29 tháng 5 2016

a/ Ta có:

\(A=x^2-6x+11\)

\(A=x\cdot x-3x-3x+3\cdot3+2\)

\(A=x\left(x-3\right)-3\left(x-3\right)+2\)

\(A=\left(x-3\right)\left(x-3\right)+2\)

\(A=\left(x-3\right)^2+2\)

Vì \(\left(x-3\right)^2\ge0\)

Nên GTNN của \(\left(x-3\right)^2\)là 0

=> \(A_{min}=0+2=2\)

29 tháng 5 2016

mình chỉ biết a. thôi

a) ta có : \(A=x^2-6x+11\)

\(A=x.x-3x-3x+3.3+2\)

\(A=x\left(x-3\right)-3\left(x-3\right)+2\)

\(A=\left(x-3\right)\left(x-3\right)+2\)

\(A=\left(x-3\right)^2+2\)

vì \(\left(x-3\right)^2\ge0\)

nên GTNN của \(\left(x-3\right)^2\)là \(0\)

\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)

3 tháng 5 2021

\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)

Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2 

\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)

\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)

\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6 

3 tháng 5 2021

\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)

\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2 

\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)

\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4