Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g) Ta có: \(G=x^2+6x+4y^2-10y+5\)
\(=x^2+6x+9+\left(2y\right)^2-2\cdot2y\cdot\frac{5}{2}+\frac{25}{4}-\frac{41}{4}\)
\(=\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\)
Ta có: \(\left(x+3\right)^2\ge0\forall x\)
\(\left(2y-\frac{5}{2}\right)^2\ge0\forall y\)
Do đó: \(\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x+3\right)^2+\left(2y-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\forall x,y\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x+3=0\\2y-\frac{5}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\2y=\frac{5}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=\frac{5}{2}:2=\frac{5}{4}\end{matrix}\right.\)
Vậy: Giá trị nhỏ nhất của biểu thức \(G=x^2+6x+4y^2-10y+5\) là \(-\frac{41}{4}\) khi x=-3 và \(y=\frac{5}{4}\)
\(H=-2\left(x^2+3x+\frac{9}{4}\right)-3\left(y^2-4y+4\right)+\frac{17}{2}\)
\(H=-2\left(x+\frac{3}{2}\right)^2-3\left(y-2\right)^2+\frac{17}{2}\le\frac{17}{2}\)
\(H_{max}=\frac{17}{2}\) khi \(\left\{{}\begin{matrix}x=-\frac{3}{2}\\y=2\end{matrix}\right.\)
a. Ta có : \(A=\frac{8x^2-9}{x^2+3}=\frac{8x^2+24-33}{x^2+3}=8-\frac{33}{x^2+3}\)
Để Amin thì \(\frac{33}{x^2+3}_{max}\) mà \(\frac{33}{x^2+3}\le11\)
Dấu "=" xảy ra \(\Leftrightarrow x^2+3=3\Leftrightarrow x=0\)
Vậy Amin = 8 - 11 = - 3 <=> x = 0
b. Ta có : \(B=\frac{3x^2-6x+40}{x^2-2x+5}=\frac{3\left(x^2-2x+5\right)+25}{x^2-2x+5}=3+\frac{25}{x^2-2x+5}\)
Để Bmax thì \(\frac{25}{x^2-2x+5}=\frac{25}{\left(x-1\right)^2+4}_{max}\)
mà \(\frac{25}{\left(x-1\right)^2+4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2+4=4\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy Bmax \(=3+\frac{25}{4}=\frac{37}{4}\) <=> x = 1
\(I=\frac{6}{x^2-6x+30}\\ I=\frac{6}{x^2-6x+36-6}\\ I=\frac{6}{\left(x-6\right)^2-6}\)
Có \(\left(x-6\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-6\right)^2-6\ge-6\forall x\\ \Rightarrow I=\frac{6}{\left(x-6\right)^2-6}\le\frac{6}{-6}=-1\forall x\)
Vậy \(max_I=-1\)
\("="\Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x-6=0\\ \Leftrightarrow x=6\)
a/ Ta có:
\(A=x^2-6x+11\)
\(A=x\cdot x-3x-3x+3\cdot3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
Vì \(\left(x-3\right)^2\ge0\)
Nên GTNN của \(\left(x-3\right)^2\)là 0
=> \(A_{min}=0+2=2\)
mình chỉ biết a. thôi
a) ta có : \(A=x^2-6x+11\)
\(A=x.x-3x-3x+3.3+2\)
\(A=x\left(x-3\right)-3\left(x-3\right)+2\)
\(A=\left(x-3\right)\left(x-3\right)+2\)
\(A=\left(x-3\right)^2+2\)
vì \(\left(x-3\right)^2\ge0\)
nên GTNN của \(\left(x-3\right)^2\)là \(0\)
\(\Rightarrow\)\(A_{min}\)\(=0+2=2\)
\(A=x^2-4x+10=x^2-4x+4+6=\left(x-2\right)^2+6\ge6\)
Vậy GTNN A là 6 khi x - 2 = 0 <=> x = 2
\(B=\left(1-x\right)\left(3x-4\right)=3x-4-3x^2+4x=-3x^2+7x-4\)
\(=-3\left(x^2-\frac{7}{3}x+\frac{4}{3}\right)=-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{1}{36}\right)=-3\left(x-\frac{7}{6}\right)^2+\frac{1}{12}\ge\frac{1}{12}\)
\(=3\left(x-\frac{7}{6}\right)^2-\frac{1}{12}\le-\frac{1}{12}\)Vậy GTLN B là -1/12 khi x = 7/6
\(C=3x^2-9x+5=3\left(x^2-3x+\frac{5}{3}\right)=3\left(x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{7}{12}\right)\)
\(=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)Vậy GTNN C là -7/4 khi x = 3/2
\(D=-2x^2+5x+2=-2\left(x^2-\frac{5}{2}x-1\right)=-2\left(x^2-2.\frac{5}{4}x+\frac{25}{16}-\frac{41}{16}\right)\)
\(=-2\left(x-\frac{5}{4}\right)^2+\frac{21}{8}\le\frac{21}{8}\)Vậy GTLN D là 21/8 khi x = 5/4
g) G = x2 + 6x + 4y2 - 10y + 5
G = (x2+ 6x + 9) + 4(y2 - 2,5y + 1,5625) - 10,25
G = (x + 3)2 + 4(y - 1,25)2 - 10,25 \(\ge\)-10,25 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+3=0\\y-1,25=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1,25\end{cases}}\)
Vậy MinG = -10,25 khi x = -3 và y = 1,25
h) H = -2x2 - 6x - 3y2 + 12y - 8
H = -2(x2 + 3x + 2,25) - 3(y2 - 4y + 4)+ 8,5
H = -2(x + 1,5)2 - 3(Y - 2)2 + 8,5 \(\le\)8,5 với mọi x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+1,5=0\\y-2=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-1,5\\y=2\end{cases}}\)
vậy MaxH = 8,5 khi x = -1,5 và y = 2