K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Ta có : x + y = 3 => x = 3 - y 

=> \(xy=\left(3-y\right)y=3y-y^2=-\left(y^2-3y\right)=-\left[y^2-2.y.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2\right]\)

\(=-\left[\left(y-\frac{3}{2}\right)^2-\frac{9}{4}\right]=-\left(y-\frac{3}{2}\right)^2+\frac{9}{4}\)

Vì \(-\left(y-\frac{3}{2}\right)^2\le0\) \(\forall x\)

\(\Rightarrow-\left(y-\frac{3}{2}\right)^2+\frac{9}{4}\le\frac{9}{4}\) \(\forall x\)

Dấu "=" xảy ra <=> \(-\left(y-\frac{3}{2}\right)^2=0\Rightarrow y=\frac{3}{2}\Rightarrow x=3-\frac{3}{2}=\frac{3}{2}\)

Vậy GTNN của xy là \(\frac{9}{4}\) tại \(x=y=\frac{3}{2}\)

28 tháng 2 2017

GTNN của xy là 9/4 tại x = y = 3/2

   Mà bạn Đinh Đức Hùng có hack không vậy? Sao bạn ấy nhiều điểm thế! (không có ý nói xấu bạn đâu nha! Đừng hiểu lầm mình)

9 tháng 8 2020

Bg

Ta có: A = \(\frac{2012}{9-x}\)   (x \(\inℤ\); x \(\ne\)9)  (x = 9 thì mẫu = 0, vô lý)

Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0

=> 9 - x = 1

=> x = 9 - 1

=> x = 8

=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)

Vậy A đạt GTLN khi A = 2012 với x = 8

9 tháng 8 2020

kết bạn với mình đi

14 tháng 3 2017

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

10 tháng 4 2017

= 1/4 nhe

24 tháng 2 2017

Câu 2:

  \(=2\left(x^2-\frac{1}{2}+\frac{3}{2}\right)\)

  \(=2\left(x^2-\frac{1}{2}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2+\frac{3}{2}\right)\)

   \(=2\left(\left(x-\frac{1}{4}\right)^2+\frac{23}{16}\right)\)

   \(=2\left(x-\frac{1}{4}\right)^2+2.\frac{23}{16}\)

   \(=2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}\le\frac{23}{8}\)

Vậy MaxB = \(\frac{23}{8}\Leftrightarrow x-\frac{1}{4}=0\)

                            \(\Leftrightarrow x=\frac{1}{4}\)