Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g\left(x\right)=x^4-4x^3+4x^2+a\)
\(g'\left(x\right)=4x^3-12x^2+8x=0\Leftrightarrow4x\left(x^2-3x+2\right)\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)
\(f\left(0\right)=f\left(2\right)=\left|a\right|\) ; \(f\left(1\right)=\left|a+1\right|\)
TH1: \(\left\{{}\begin{matrix}M=\left|a\right|\\m=\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a\right|\ge\left|a+1\right|\\\left|a\right|\le2\left|a+1\right|\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}-\dfrac{2}{3}\le a\le-\dfrac{1}{2}\\a\le-2\end{matrix}\right.\) \(\Rightarrow a=\left\{-3;-2\right\}\)
TH2: \(\left\{{}\begin{matrix}M=\left|a+1\right|\\m=\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|a+1\right|\ge\left|a\right|\\\left|a+1\right|\le2\left|a\right|\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le a\le-\dfrac{1}{3}\\a\ge1\end{matrix}\right.\) \(\Rightarrow a=\left\{1;2;3\right\}\)
Chọn B.
Ta có
Do đó hàm số đồng biến trên [0;2].
Suy ra
Do đó 4M – 2m = 6.
Đáp án: A.
Tập xác định: D = R \{3}
∀x ∈ D.
Do đó f(x) nghịch biến trên (- ∞ ; 3) và (3; + ∞ ).
Ta thấy [0;2] ⊂ (- ∞ ;3). Vì vậy
max f(x) = f(0) = 1/3, min f(x) = f(2) = -3.
Chọn B
Xét hàm số g(x) = x 3 - 3 x + m trên ℝ
Bảng biến thiên của hàm số g(x):
Đồ thị của hàm số y = |g(x)| thu được bằng cách giữ nguyên phần đồ thị phía trên trục hoành của (C): y = g(x), còn phần đồ thị phía dưới trục hoành của (C): y = g(x) thì lấy đối xứng qua trục hoành lên trên. Do đó, ta có biện luận sau đây:
Ta xét các trường hợp sau:
Khi đó: nên
Như vậy
(loại)
Khi đó: , nên
Như vậy (thỏa mãn)
(loại)
do đó
(thỏa mãn)
do đó
(thỏa mãn)
Suy ra S = {-1;1}. Vậy chọn B
Đáp án A
Phương pháp:
- TXĐ
- Tính nghiệm và tìm các điểm không xác định ' y
- Tìm các giá trị tại x = 0, x = 2 và các điểm đã tìm ở trên (nằm trong đoạn đang xét) 0, 2 x x
- Xác định giá trị lớn nhất trong các giá trị đó.
Cách giải:
TXĐ: D = R
Chọn C
Hàm số y = x 2 + x + 4 x + 1 là hàm phân thức có tập xác định là nên nó liên tục trên [0;2], từ đó ta vận dụng quy tắc tìm giá trị lớn nhất và nhỏ nhất không cần xét dấu đạo hàm.
Ta có
=> A = 4, a = 3.
Vậy a + A = 7.
Đáp án D