Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)
GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)
Biểu thức ko tồn tại GTLN
Vừa học xong :v
\(A=\frac{4}{4x^2-4x+7}\)
Ta có : \(4x^2-4x+7=4x^2-4x+1+6\)
\(=\left(2x-1\right)^2+6\ge6\)Do đó :
\(\frac{4}{\left(2x-1\right)^2+6}\le\frac{4}{6}=\frac{2}{3}\)
Dấu ''='' xảy ra : <=> \(x=\frac{1}{2}\)
Vậy GTLN A = 2/3 <=> x = 1/2
Ta có : 4x2 - 4x + 7
= ( 4x2 - 4x + 1 ) + 6
= ( 2x - 1 )2 + 6 ≥ 6 ∀ x
hay 4x2 - 4x + 7 ≥ 6 ∀ x
=> \(\frac{1}{4x^2-4x+7}\le\frac{1}{6}\left(\forall x\right)\)
=> \(\frac{4}{4x^2-4x+7}\le\frac{4}{6}=\frac{2}{3}\left(\forall x\right)\)
Đẳng thức xảy ra khi x = 1/2
=> MaxA = 2/3 <=> x = 1/2
TXĐ: D=[-2,2]
P'=\(1-\frac{x}{\sqrt{4-x^2}}\)
P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)
\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)
=> \(x=\sqrt{2}\)
P(-2)=-2
\(P\left(\sqrt{2}\right)=2\sqrt{2}\)
P(2)=2
Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1
A=−2x2−10y2+4xy+4x+4y+2016A=−2x2−10y2+4xy+4x+4y+2016
=−2.(x2+5y2−4xy−4x−4y)+2016=−2.(x2+5y2−4xy−4x−4y)+2016
=−2.(x2+4y2+4−4xy−4x+8y+y2−12y+36)+2.36+2016=−2.(x2+4y2+4−4xy−4x+8y+y2−12y+36)+2.36+2016
=−2.[(x−2y−2)2+(y−6)2]+2088=−2.[(x−2y−2)2+(y−6)2]+2088
Ta có: (x−2y−2)2+(y−6)2≥0(x−2y−2)2+(y−6)2≥0
⇒−2.[(x−2y−2)2+(y−6)2]≤0⇒−2.[(x−2y−2)2+(y−6)2]≤0
⇒−2.[(x−2y−2)2+(y−6)2]+2088≤2088⇒−2.[(x−2y−2)2+(y−6)2]+2088≤2088
⇒A≤2088⇒A≤2088
Vậy giá trị lớn nhất của A=2088A=2088 khi: \hept{x−2y−2=0y=6⇒\hept{x=2y+2y=6⇒\hept{x=14y=6\hept{x−2y−2=0y=6⇒\hept{x=2y+2y=6⇒\hept{x=14y=6
Thu gọn
\(A=-2\left(x^2+2xy+y^2\right)+4\left(x+y\right)-2-8y^2+2018\\ A=-2\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]-8y^2+2018\\ A=-2\left(x+y-1\right)^2-8y^2+2018\le2018\\ A_{max}=2018\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(Q=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)
Dấu "=" xảy ra khi và chỉ khi x = 3
Vậy Max Q = 10 khi và chỉ khi x = 3
Có: Q=−x2+6x+1=−(x2−6x−1)=−(x2−6x+9−10)=−(x−3)2+10≤10
=> Max Q = 10
Dấu "=" <=> x=3
\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)
\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=5 khi x=1
\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MaxB=4 khi x=2
a) \(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
MIn A = 5 khi \(x-1=0=>x=1\)
b) \(4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=>-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)\ge4\)
MIN B = 4 khi \(x-2=0=>x=2\)
Ủng hộ nha tối rồi